The Latest on CRISPR/Cas9: A Collection of Papers

A recent issue of ACS Chemical Biology includes some 25 articles on various aspects of CRISPR/Cas systems – mechanisms and applications.  While not all of the articles will be of direct interest to insect biologists, many are and anyone working with these systems or planning on working with these systems will benefit from spending some time with this issue.

The paper by Mir et al. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application is a good place to start if one is interested in an overview of CRISPR/Cas9 systems. Likewise the paper by Pyzocha and Chen, Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications
provides a review of CRISPR systems with single effector proteins – such as the Cas9 system. But there are other single effector CRISPR systems – Cpf1 for DNA editing, Cas13a and Cas13b for RNA editing.

While this entire issue makes for great reading, some of the other papers in this issue that might be of particular interest to insect biologists are

Thompson et al’s The Future of Multiplexed Eukaryotic Genome Engineering;

Burt and Crisanti’s Gene Drive: Evolved and Synthetic;

Wilson and Gilbert’s The Promise and Challenge of In Vivo Delivery for Genome Therapeutics;

Komor et al’s Editing the Genome Without Double-Stranded DNA Breaks;

Pawelczak et al’s Modulating DNA Repair Pathways to Improve Precision Genome Engineering;

‘s Protein Inhibitors of CRISPR-Cas9;

Marshall and Akbari’s Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology; and

Rose et al’s Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing

  1. Special Issue on the Chemical Biology of CRISPR

    Alyson G. Weidmann and Amit Choudhary
    ACS Chemical Biology 2018 13 (2), 283-284

    DOI: 10.1021/acschembio.8b00134

  2. Introducing Our Authors

    Brian Wyler
    ACS Chemical Biology 2018 13 (2), 285-289

    DOI: 10.1021/acschembio.8b00136

  3. Spotlight: A Conversation with Laura Kiessling and Jennifer Doudna

    Laura L. Kiessling and Jennifer A. Doudna
    ACS Chemical Biology 2018 13 (2), 290-295

    DOI: 10.1021/acschembio.8b00108

  4. Frontiers in CRISPR

    Alyson G. Weidmann
    ACS Chemical Biology 2018 13 (2), 296-304

    DOI: 10.1021/acschembio.8b00135

  5. Discovering the Genome-Wide Activity of CRISPR-Cas Nucleases

    Shengdar Q. Tsai
    ACS Chemical Biology 2018 13 (2), 305-308

    DOI: 10.1021/acschembio.7b00847

  6. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma

    Eugene V. Koonin and Kira S. Makarova
    ACS Chemical Biology 2018 13 (2), 309-312

    DOI: 10.1021/acschembio.7b00713

  7. The Future of Multiplexed Eukaryotic Genome Engineering

    David B. Thompson, Soufiane Aboulhouda, Eriona Hysolli, Cory J. Smith, Stan Wang, Oscar Castanon, and George M. Church
    ACS Chemical Biology 2018 13 (2), 313-325

    DOI: 10.1021/acschembio.7b00842

  8. Identifying Novel Enhancer Elements with CRISPR-Based Screens

    Jason C. Klein, Wei Chen, Molly Gasperini, and Jay Shendure
    ACS Chemical Biology 2018 13 (2), 326-332

    DOI: 10.1021/acschembio.7b00778

  9. Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications

    Renee D. Wegrzyn, Andrew H. Lee, Amy L. Jenkins, Colby D. Stoddard, and Anne E. Cheever
    ACS Chemical Biology 2018 13 (2), 333-342

    DOI: 10.1021/acschembio.7b00689

  10. Gene Drive: Evolved and Synthetic

    Austin Burt and Andrea Crisanti
    ACS Chemical Biology 2018 13 (2), 343-346

    DOI: 10.1021/acschembio.7b01031

  11. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications

    Neena K. Pyzocha and Sidi Chen
    ACS Chemical Biology 2018 13 (2), 347-356

    DOI: 10.1021/acschembio.7b00800

  12. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application

    Aamir Mir, Alireza Edraki, Jooyoung Lee, and Erik J. Sontheimer
    ACS Chemical Biology 2018 13 (2), 357-365

    DOI: 10.1021/acschembio.7b00855

  13. CRISPR Approaches to Small Molecule Target Identification

    Marco Jost and Jonathan S. Weissman
    ACS Chemical Biology 2018 13 (2), 366-375

    DOI: 10.1021/acschembio.7b00965

  14. The Promise and Challenge of In Vivo Delivery for Genome Therapeutics

    Ross C. Wilson and Luke A. Gilbert
    ACS Chemical Biology 2018 13 (2), 376-382

    DOI: 10.1021/acschembio.7b00680

  15. Editing the Genome Without Double-Stranded DNA Breaks

    Alexis C. Komor, Ahmed H. Badran, and David R. Liu
    ACS Chemical Biology 2018 13 (2), 383-388

    DOI: 10.1021/acschembio.7b00710

  16. Modulating DNA Repair Pathways to Improve Precision Genome Engineering

    Katherine S. Pawelczak, Navnath S. Gavande, Pamela S. VanderVere-Carozza, and John J. Turchi
    ACS Chemical Biology 2018 13 (2), 389-396

    DOI: 10.1021/acschembio.7b00777

  17. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing

    Danielle N. Gallagher and James E. Haber
    ACS Chemical Biology 2018 13 (2), 397-405

    DOI: 10.1021/acschembio.7b00760

  18. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine

    Martin Kampmann
    ACS Chemical Biology 2018 13 (2), 406-416

    DOI: 10.1021/acschembio.7b00657

  19. Protein Inhibitors of CRISPR-Cas9

    Joseph Bondy-Denomy
    ACS Chemical Biology 2018 13 (2), 417-423

    DOI: 10.1021/acschembio.7b00831

  20. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology

    John M. Marshall and Omar S. Akbari
    ACS Chemical Biology 2018 13 (2), 424-430

    DOI: 10.1021/acschembio.7b00923

  21. Multidimensional Control of Cas9 by Evolved RNA Polymerase-Based Biosensors

    Jinyue Pu, Kaitlin Kentala, and Bryan C. Dickinson
    ACS Chemical Biology 2018 13 (2), 431-437

    DOI: 10.1021/acschembio.7b00532

  22. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing

    John C. Rose, Jason J. Stephany, Cindy T. Wei, Douglas M. Fowler, and Dustin J. Maly
    ACS Chemical Biology 2018 13 (2), 438-442

    DOI: 10.1021/acschembio.7b00652

  23. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription

    Xin X. Zhou, Xinzhi Zou, Hokyung K. Chung, Yuchen Gao, Yanxia Liu, Lei S. Qi, and Michael Z. Lin
    ACS Chemical Biology 2018 13 (2), 443-448

    DOI: 10.1021/acschembio.7b00603

  24. Generation of Optogenetically Modified Adenovirus Vector for Spatiotemporally Controllable Gene Therapy

    Kazuo Takayama and Hiroyuki Mizuguchi
    ACS Chemical Biology 2018 13 (2), 449-454

    DOI: 10.1021/acschembio.7b01058

  25. Chemical Control of a CRISPR-Cas9 Acetyltransferase

    Jonathan H. Shrimp, Carissa Grose, Stephanie R. T. Widmeyer, Abigail L. Thorpe, Ajit Jadhav, and Jordan L. Meier
    ACS Chemical Biology 2018 13 (2), 455-460

    DOI: 10.1021/acschembio.7b00883

  26. A Cleavage-Responsive Stem-Loop Hairpin for Assaying Guide RNA Activity

    Tara R. deBoer, Noreen Wauford, Jing-Yi Chung, Miguel Salvador Torres Perez, and Niren Murthy
    ACS Chemical Biology 2018 13 (2), 461-466

    DOI: 10.1021/acschembio.7b00899

  27. CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide

    Marie K. Schwinn, Thomas Machleidt, Kris Zimmerman, Christopher T. Eggers, Andrew S. Dixon, Robin Hurst, Mary P. Hall, Lance P. Encell, Brock F. Binkowski, and Keith V. Wood
    ACS Chemical Biology 2018 13 (2), 467-474

    DOI: 10.1021/acschembio.7b00549

  28. Two-Color 810 nm STED Nanoscopy of Living Cells with Endogenous SNAP-Tagged Fusion Proteins

    Alexey N. Butkevich, Haisen Ta, Michael Ratz, Stefan Stoldt, Stefan Jakobs, Vladimir N. Belov, and Stefan W. Hell
    ACS Chemical Biology 2018 13 (2), 475-480

    DOI: 10.1021/acschembio.7b00616

  29. Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex

    Paul B. G. van Erp, Angela Patterson, Ravi Kant, Luke Berry, Sarah M. Golden, Brittney L. Forsman, Joshua Carter, Ryan N. Jackson, Brian Bothner, and Blake Wiedenheft
    ACS Chemical Biology 2018 13 (2), 481-490

    DOI: 10.1021/acschembio.7b00649

Facebooktwittergoogle_plusredditpinterestlinkedinmailFacebooktwittergoogle_plusredditpinterestlinkedinmail

Post a Comment

Your email address will not be published. Required fields are marked *