Participants

Participation in the Insect Genetic Technologies Research Coordination Network is open to students (undergraduate and graduate), postdoctoral researchers, technical and scientific staff and independent investigators with an interest in insect science, genomics and genetic technologies. Knowledge of and/or expertise with insect genetic technologies is not required to participate in this network. In fact, those without specific knowledge of insect genetic technologies are especially encouraged to participate so that a broader understanding and application of these technologies can be developed.

As a participant you will be able to fully interact and access the resources on this site. You will be able to find experts interested in technologies or insect systems you are interested in, find consultants or collaborators and submit content to this site in the form of ‘posts’ to Technology Topics, Knowledgebase, Network Announcements and Activities.


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Participant Contact Research Focus
CHUN-QING ZHAO
Assocaite Professor
College of Plant Protection
Nanjing Agricultural University
Nanjing Jiangsu China
zcqcau@126.com

insect resistance, neurotransmitter receptor
Farkhanda Manzoor
prof
CV
zoology
Lahore college for women university, Lahore
LAHORE PUNJAB Pakistan
doc_farkhanda@yahoo.com
Entomology Research Lab
She is known for her research on Taxonomy, biology and integrated management (control) of urban insect pests such as termites, mosquitoes, cockroaches, ants etc. She has introduced termite baiting in Pakistan and has been working with resistance to insecticides against mosquitoes, cockroaches and flies.
Fotini Koutroumpa
ECOSENS, iEES-Paris
INRA Versailles
Versailles Ille de France France
fotini.koutroumpa@gmail.com

I am interested in the characterization of genes involved in insects' chemosensation and particularly the ones involved in pheromone and food perception
Kostas Mathiopoulos
Professor, Department Chair
Department of Biochemistry and Biotechnology
University of Thessaly
Larissa Larissa Greece
kmathiop@bio.uth.gr

Molecular biology and genomics of economically important pests, particularly Tephritids. Focus on olfactory and reproductive systems. Study of the structure, function and evolution of the Y chromosome.
saptarshi ghosh
Department of Entomology
Volcani Center, Agriculture research organisation, Israel
Rishon Lezion Rishon Lezion Israel
sunnysaptarshi@gmail.com

Insect-vector interactions
Maciej Maselko
Biotechnology Institute
University of Minnesota
St. Paul MN USA
mmaselko@umn.edu

I am developing Synthetic Incompatibility; an approach for engineering species-like barriers in sexually reproductive organisms. Synthetic Incompatibility has applications for transgene biocontainment in plants engineered to produce high-value compounds and for controlling pest species such as mosquitoes and invasive fish.
Lucia Proietti
CV
Zoology
Central University of Venezuela
Hialeah  Florida USA
proietti.dempaire@gmail.com

In my bachelor degree ( from Central University of Venezuela): I worked with Trypanosoma evansi and then I got some ability in trypanosomes diagnosis by PCR and supported the experiments about recombinant protein between T vivax cysteine protease and HSP70. In my PhD (from Ferrara University, Italy): I worked with T brucei 6PGDH. I studied:
Maria Soto-Aguilar
Project Scientist
Department of Plant Pathology
University of California, Davis
Davis CA United States
msotoaguilar@ucdavis.edu

plant-pathogen-vector interaction
Gonse Marius Zoh
PhD student, Medical entomogist CNRS
Department of biology
Université de Grenoble, France
Grenoble Rhones-Alpes FRANCE
zgonse@gmail.com
Laboratoire d'Ecologie Alpine (LECA)
Mechanisms involved in the resistance of Anopheles gambiae to a new formulation of the insecticidal fusion of pyrethroids and neonicotinoids
Adriana Adolfi
Postdoc
Microbiology & Molecular Genetics
University of California Irvine
Irvine California United States
adriana.adolfi@uci.edu
James Lab
Gene drives for population replacement in the malaria mosquito Anopheles stephensi
David Arnosti
Professor
Biochemistry & Molecular Biology
Michigan State University
East Lansing MI USA
arnosti@msu.edu

Our research focuses on understanding the mechanisms of transcriptional regulation in the context of Drosophila development. We utilize genetic and molecular biological approaches to study the role of enhancers in regulation of signaling and patterning circuits, including insulin signaling, retinoblastoma-mediated control of growth related genes, and chromatin-modulating complexes important for development. Evolutionary perspectives lead us to consider how these processes are active in non-model insects, as well as vertebrates.
Kara Boltz
Postdoctoral Research Scholar
Entomology & Plant Pathology
North Carolina State University
Raleigh NC USA
kaboltz@ncsu.edu

Design and evaluation of gene drives in fly pests.
Dylan Shropshire
Biological Sciences
Vanderbilt University
Nashville TN United States
dylan.shropshire@vanderbilt.edu

Endosymbiont genetics
Rocio Elisa Yanes Ruano
CV
MOSCAMED
Guatemala Department of Agriculture
San Miguel Petapa Guatemala Guatemala
reyr66@gmail.com
San miguel Petapa Facilities
Anastrepha Ludens Ceratitis Capitata
Jennina Taylor-Wells
Research Scientist
Research and Development
Oxitec Ltd
Abingdon Oxfordshire England, United Kingdom
jennina.taylor-wells@oxitec.com
Oxitec Ltd
My research focus encompasses the design and creation of transgenic mosquitoes for novel vector control strategies. I am interested in novel molecular biology developments for the improved design of plasmids for insect transformation, research developments in transformation efficiency and new technologies relating to insect mass rearing.
Joanna Kotwica-Rolinska
PhD
Department of Molecular Biology and Genetics
Institute of Entomology, Biology Centre , Czech Academy of Sciences
Ceske Budejovice  ‎South Bohemia Czech Republic
askako@entu.cas.cz
Laboratory of Molecular Chronobiology
We are interested in isnsect seasonality which includes hormonal regulation of adult diapause, architecture of the photoperiodic timer (at molecular, genetic and cellular levels), and it's connection to the circadian clock.
Junesun Yoon
Entomology
University of Kentucky
Lexington KY United States
june.yoon@uky.edu
Palli Lab at U of Kentucky
RNA interference (RNAi) is a useful reverse genetic tools for investigating the gene function. Moreover, RNAi also has potential practical applications in many fields including medicine and agriculture. The variability in RNAi efficacy among insect species limits the range of its application. I am trying to understand the mechanism of RNA interference in insects to facilitate the use of RNAi to control pests. I study coleopteran insects to understand how/why RNAi works well as successful RNAi models and lepidopteran insects to investigate the barriers for efficient RNAi.
Ewald Große-Wilde
Evolutionary Neuroethology
MPI for Chemical Ecology
Jena Thüringen Germany
ewald.grosse.wilde@gmail.com

Arthropod chemosensation.
Matthew Edgington
Dr
Artropod Genetics
The Pirbright Institute
Woking Surrey UK
matt.edgington@pirbright.ac.uk

Mainly working on mathematical modelling of engineered underdominance gene drive systems in Aedes aegypti mosquitoes but also some other classes of gene drive.
Antonis Giakountis
Assistant Professor
Biochemistry and Biotechnology
University of Thessaly
Larisa Larisa Greece
agiakountis@uth.gr
Molecular Biology and Genomics
long non-coding RNAs, chromatin architecture, epigenomics, transcriptional regulation, development
David Dolezel
Instiute of Entomology
Biology Center
Ceske Budejovice Czech Republic Czech Republic
david.dolezel@entu.cas.cz

In our group we are mainly interested in understanding insect seasonality – diapause; architecture of photoperiodic timer (at molecular, genetic and cellular levels), geographic variability of the photoperiodic timer, Juvenile hormone signaling in reproduction of insects. The classical genetic models, such as D. melanogaster, display only poor photoperiodic response. Therefore we are trying to "bring" genetic tools to insect species with robust seasonal response. Our favorite organism is the linden bug (fire bug), Pyrrhocoris apterus. In this species we are mainly in terested in: endocrinology (neuropeptides, evolution of neuropeptide receptors), reproductive behavior, circadian clock, phylogeography of P. apterus and its adaptation.
Lucille Kohlenberg
BME
UW Madison
Madison WI USA
lkohlenberg@wisc.edu

Genome Engineering
Adam CN Wong
Assistant Professor
Entomology and Nematology
University of Florida
Gainesville Florida USA
adamcnwong@ufl.edu

Our laboratory is broadly interested in insect-microbe interactions that span the areas of symbiosis, pathogenesis, metabolism, nutrition and behavior. A major theme is to integrate omics, molecular and ecological approaches to better understand how the gut microbiome modulates insect physiological responses to changing environment and the virulence mechanisms of gut pathogens. We use Drosophila as our primary research model with the goal of translating into agriculturally- and medically-important insects for novel management strategies.
Changmin Ko
Developmental and Molecular Biology
Albert Einstein College of Medicine
Bronx New York USA
changmin.ko@einstein.yu.edu

Role of Wnk in wg pathway and Na+/K+ co-transporter activity
Atif Manzoor
Assistant Professor (IPFP, HEC)
Agricultural Biotechnology Division
National Institute of Biotechnology and Genetic Engineering
Faisalabad Pujnab Pakistan
atif1903@yahoo.com

My basic research interests are the proteomic and transcriptomic studies of parasitoid venoms and isolation of bioactive genes present in the venom glands.
Austin Compton
Biochemistry
Virginia Tech
Newport Virginia United States
austc14@vt.edu

I am interested in delineating the biological mechanism of sex determination in different Anopheles mosquitoes by characterizing the role of male-determining (M) factors.
Johan Ariff Mohtar
Mr
CV
Department of Chemical Engineering Technology (Industrial Biotechnology)
Universiti Malaysia Perlis
Kampus UniCiti Alam, Sungai Chuchuh, Padang Besar Perlis Malaysia
joarach82@gmail.com
Tissue Culture and Biomolecular Laboratory
For the past two years, I have been engaging in the spider silk research for tissue engineering application. Spider silk gland from the basal lineage of spider species provides a promising platform as a potential bioreactor for recombinant protein production. I am pursuing a PhD study in the effort of developing transgenic social spiders for such purpose
OLUSOLA SOKEFUN
Dr
Genetics / Bioinformatics
Lagos State University, Faculty of Science, Ojo
Lagos Lagos Nigeria
osokefun@gmail.com
Genetics / Bioinformatics Lab
Phylogeny, Barcoding, Population Genetics
Bianca Kojin
Post-doctoral Research Associate
Department of Entomology
Texas A&M University
College Station Texas USA
bianca.burini@gmail.com

Genetic transmission of engineered transgenes.
Michael O. Kusimo
Dr.
CV
Independent researcher
IITA, Benin Station
Ifako-Ogba Lagos Nigeria
gkusimo@gmail.com

1. Molecular detoxification mechanisms in insect vectors and development of new reagents to overcome insecticide resistance 2. Assessment of new model organisms 3. Mapping of the distribution of mosquito-borne pathogens 4. Chromosomal gene screening and testing 5. Directed evolution of genes 6. Understanding the molecular mechanism of antimicrobial resistance genes 7. Development of amber temperature stable enzymes
Kristal Watrous
Assistant Specialist
CV
Entomology
University of California, Riverside
Riverside CA USA
kristal.watrous@ucr.edu
Woodard Lab
I am working at the interface of pollination biology and molecular research. I study the behavior and biology of solitary and social bees native to North America, and how nutritional availability and diversity affects their physiology, gene expression, and measures of survival. I am working on laboratory rearing techniques for bumble bee species in order to bring ecological and natural history questions into the lab for experimental manipulation.
mike tropak
dr
Genetics and Genome Biology
Sickkids
toronto ON Canada
mbt@sickkids.ca
Schulze
metabolism
Ramkumar Govindaraju
Dr
Biotechnology
Periyar University, Salem, TN, India
Salem Tamil Nadu India
rkentomology@gmail.com
Insect Molecular Toxicology Laboratory
My research is concerned with the biochemical, molecular and proteomic study in the evolution of Insecticide resistance among mosquitoes and to identify novel molecules for insect control. My work includes molecular and proteomic analysis, in addition to understanding the gene expression pattern of detoxification enzymes. Mainly my research focuses on the role of cytochrome P450 and esterase genes in conferring insecticides resistance in mosquitoes and agricultural insects.
Jared Koler
Biotechnology
University of Nevada Reno
Reno nv United States
jkoler@nevada.unr.edu
Gulia-Nuss
Lymphatic filariasis (LF), commonly known as elephantiasis, is a neglected tropical disease caused by parasitic filarial worms which are spread by infected mosquitoes taking blood meals required for egg maturation. More than 120 million people in ~70 countries are infected with LF. The Centers for Disease Control and Prevention (CDC) considers LF a priority in the ‘CDC winnable battles’ to eliminate LF from the Americas. Although drug therapy and mosquito control programs provide adequate control of LF, there are as yet no promising strategies on the horizon for the rise of drug and insecticide resistance in the worm
M’hamed El Mokhefi
Dr
Pre-Clinical
Ecole Nationale Superieure Veterinaire El Harrach
Algiers Algiers ALGERIA
elmokhefimhamed@yahoo.fr

Forest insects morphology, ecology and gentics. Response and adaptation of forest insects to climate change.
Timothy Ajiboye
Mr
Field Genebank
National Centre for Genetic Resources and Biotechnology(NACGRAB), Moor Plantation, Ibadan, Oyo State, Nigeria
Ibadan Oyo state Nigeria
ajiboyefemi2002@yahoo.com
National Centre for Genetic Resources and Biotechnology
Molecular Characterization of Cereal stem borers. Control of cereal stemborers using host plant resistance. Conservation of Insects, Tree crops, and other Field genetic Resources.
Abhijit Ghosal
Dr.
Plant Protection
Sasya Shyamala Farm Science Centre
SOUTH 24 PARGANAS WEST BENGAL India
ghosalabhijit87@gmail.com

Agricultural Entomology Insect Biotechnology
Steve Young
School of Integrative Plant Science
Cornell University
Ithaca NY USA
sly27@cornell.edu

Invasive pests
Flávia Virginio Fonseca
Biologist, PhD. candidate
CV
Paarasitology
University of Sao Paulo
Sao Paulo Sao Paulo Brazil
fvfonsecaa@gmail.com

Scientific Dissemination, Scientific Diffusion, Science Popularization, Community Engagement, Public Engagement.
Jovana Bozic
PhD
School of Biosciences and Veterinary Medicine
University of Camerino
Camerino Macerata Italy
jovana.bozic@unicam.it
Parasitology and Sanitary Entomology
Yeast symbionts of malaria vectors: manipulation of symbionts that can express anti-pathogen molecules within the host (paratransgenesis).
Rubina Chongtham
Botany
University of Delhi
Delhi Delhi India
chrubina1@yahoo.co.in

Aphids are important crop pests. Understanding plant-aphid interactions can give great insights into not only aphid biology, but also methods of crop-protection. My focus is on using transcriptomics and functional genomics in order to develop improved plant variety using RNAi.
Rebecca Corkill
PhD student
Cell & Developmental Biology
John Innes Centre
Norwich Norfolk United Kingdom
Rebecca.Corkill@jic.ac.uk
Hogenhout Lab
I am investing transgenic methods in Bemisia tabaci, along with studying th plant-hemipteran interactions.
Gaël Le Trionnaire
Research Scientist
Plant health and protection
INRA, France
Le Rheu Brittany France
gael.le-trionnaire@inra.fr
Ecology and Genetic of Insects
Functional Genomics in Aphids. We are particularly interested on how aphids can perceive changes in day length to switch from asexual to sexual reproduction. We thus develop integrative genomics (RNA-seq, FAIRE-seq and ChIP-seq) to understand large scale genome expression changes but are also currently setting up a step-by-step protocol of targeted mutagenesis with CRISPR-Cas9 system to precisely test for the real function of candidate genes in the photoperiodic response.
Nahid Borhani Dizaji
Post doc fellow
molecular microbiology and immunology
Johns Hopkins University , School of public health
Baltimore MD United States
nborhan1@jhu.edu

my focus interest is on different aspects of vector biology like mosquito-pathogen interactions and dissection of mosquito immunity to Plasmodium and dengue virus infection with emphasis on developing novel strategies against mosquito born disease vectors. As a current post doc fellow I am working on generating of transgenic mosquitoes.
Sarah Woodard
Assistant Professor
Department of Entomology
University of California, Riverside
Riverside California USA
hollis.woodard@ucr.edu
Woodard Lab
My research group uses bees as a model system for understanding the proximate mechanisms underlying adaptation, sensitivity, and resilience, with a focus on the behavior, physiology, and population dynamics of native bees in rapidly changing and extreme environments. We primarily use the bumble bee system for experimental research.
Heath Blackmon
Assistant Professor
Department of Biology
Texas A&M University
College Station TX United States
coleoguy@gmail.com

I am interested in chromosome evolution, specifically, sex chromosome and chromosome number evolution. To address these topics, I use a broad range of approaches including theoretical population genetics, applied phylogenetics, and bioinformatics.
Mary Adewole
Miss
CV
Department of Crop Protection and Environmental Biology
University of Ibadan, Nigeria
Ibadan Oyo Nigeria
modupeadewole75@gmail.com
Entomology Laboratory
MY ACADEMIC RESEARCH FOCUS I am a young graduate female researcher with a Bachelor’s Degree in Agriculture (Crop protection) from the Federal University of Agriculture, Abeokuta (2010). I have concluded a Master of Science Degree (2015) (Entomology) in the Department of Crop Protection and Environmental Biology, University of Ibadan with a Ph.D grade. Quest for more knowledge and desire to be an academia, a researcher and voice to reckon with in in the academic research world (Agriculture) have informed my stride to apply for further study to acquire Ph.D. I have been offered
Igor Medici de Mattos
Ph.D.
Department of Ecology Evolution and Behavior
Hebrew University of Jerusalem
Jerusalem Jerusalem  Israel
igormmattos@yahoo.com.br

I'm interested in a variety of aspects concerning honey bees (Apis mellifera) genetics. I'm also involved in research addressing honey bee behavior and physiology.
Rakesh Joshi
Assistant Professor
CV
Institute of Bioinformatics and Biotechnology
Savitribai Phule Pune University (Formerly University of Pune)
Pune Maharashtra India
rakeshjoshi687@gmail.com
Insect Biology Lab
Our group mainly deals with exploring new targets in agricultural pest and developing their blockers, which can be further applied for crop protection.
Željko Popović
Assistant professor
CV
Department of Biology and Ecology
University of Novi Sad, Faculty of Sciences
Novi Sad Autonomous Province of Vojvodina Serbia
zeljko.popovic@dbe.uns.ac.rs
Laboratory of Biochemistry and Molecular Biology
My research is focused primarily on molecular/biochemical basis of insect diapause and adaptation to low temperatures and dehydration. I am interested in the use of -omics studies in research on animal dormancy and adaptation as well as application of bioinformatics in this field.
Helena Araujo
Associate Professor
Institute of Biomedical Sciences/ Institute of Molecular Enthomology
Federal University of Rio de Janeiro
Rio de Janeiro Rio de Janeiro Brazil
haraujo@histo.ufrj.br
Associate Professor
Developmental Biology in Drosophila and Rhodnius prolixus
pradeep bhongale
AGROCHEMICALS AND PEST MANAGMENT
SHIVAJI UNIVERSITY. KOLHAPUR
KOLHAPUR MAHARASTRA INDIA
pradeepbhongale1993@gmail.com

DNA BARCODING FOR PEST IDENTIFICATION AND MANAGEMENT
Julian Dow
Professor
College of Medical, Veterinary & Life Sciences
University of Glasgow
GLASGOW UNITED KINGDOM United Kingdom
julian.dow@glasgow.ac.uk
Dow/Davies labs
We are interested in exploiting genetics and transgenic technologies to understand how the organism works. Our particular focus is in organismal homeostasis, and thus the renal system. Most of our work is in Drosophila.
Janneke Bloem
Laboratory of Entomology
Wageningen University The Netherlands
Wageningen x Netherlands
janneke.bloem@wur.nl

Entomology
Yoshinori Tomoyasu
Associate Professor
Department of Biology
Miami University
Oxford OH USA
tomoyay@miamioh.edu
Tomoyasu lab
My research interests revolve around understanding the molecular basis underlying morphological evolution. We use insect wings as a model, and investigate the emergence and divergence of this evolutionary critical structure, that has made insects one of the most successful group of animals on this planet. We also study the systemic aspect of RNA interference (RNAi) in insects. RNAi, in which dsRNA suppresses the translation of homologous mRNA, is a highly conserved cellular defense mechanism. In some organisms, the RNAi response can be transmitted systemically from cell to cell, a phenomenon termed ‘systemic RNAi’. Understanding systemic RNAi will be crucial for the
Andrew Hammond
Research Associate
Life Sciences
Imperial College London
London Greater London United Kingdom
andrew.hammond08@imperial.ac.uk
Crisanti Lab
Gene drives in the malaria mosquito, Anopheles gambiae
Christian Ogaugwu
Dr
Animal and Environmental Biology
Federal University Oye-Ekiti
Oye-Ekiti Ekiti State Nigeria
christian.ogaugwu@fuoye.edu.ng

Control of insect pests and disease vectors using molecular techniques. Functional insect genomics.
Ronny Rosner
Institute of Neuroscience
Newcastle upon Tyne
Newcastle upon Tyne England,  United Kingdom
ronny.rosner@ncl.ac.uk

I am neurophysiologist and am working on stereoscopic vision in the praying mantis.
Muhammad Asif Qayyoum
Dr.
CV
ENTOMOLOGY DEPARTMENT
University of Agriculture, Faisalabad (PAK.)
University of Kentucky (USA)
FAISALABAD PUNJAB PAKISTAN
asifqayyoum@gmail.com
MUHAMMAD ASIF QAYYOUM
Soil/manure inhabiting mites taxonomy of mites parasitic mites
Kevin Vogel
CV
Department of Entomology
University of Georgia
Athens GA United States
kjvogel@uga.edu
Strand Lab
My research focuses on mechanisms of mosquito development and reproduction. Specifically, I investigate mosquito reproductive endocrinology and mosquito-microbiome interactions.
Raquel Montanez-Gonzalez
Biological Sciences
University of Notre Dame
Mishawaka IN USA
rmontane@nd.edu
Besansky Lab
Developing and validating a computational approach to identify chromosomal inversions in the Anopheles gambiae Ag1000G HapMap data, and to develop complementary molecular karyotyping approaches applicable without sequencing.
Rafael Homem
Biological Chemistry and Crop Protection Department
Rothamsted Research
Harpenden England United Kingdom
rafael.homem@rothamsted.ac.uk

Insecticide resistance
Thais Rodrigues
PhD
CV
Entomology
University of Kentucky
Lexington KY United States
thaisbarros.bio@gmail.com

RNAi technology applied to pest management
Jacob Vinay Vikas Konakondla
Fly Facility
National Centre for Biological Sciences, TIFR
Bangalore Karnataka India
kjvinayvikas@outlook.com
Fly Facility In-charge
Our facility provides services to the Drosophila researchers in the areas of transgenic generation by P-element, PhiC31 mediated, MiMIC methods. Our facility also carries of developmental work towards enabling modern genome editing technologies including CRISPR/Cas9 in Drosophila.
Richard Fandino
Dr.
Department of Evolutionary Neuroethology
Max Planck Institute for Chemical Ecology
Jena Thueringen Germany
rfandino@ice.mpg.de

My interest is mainly focused on the evolution of gene regulation and expression in chemosensory genes and the role these play in odor-guided behavior of insects. My post-doctoral studies are focused on establishing the ecological model, the sphinx moth, Manduca sexta as a feasible molecular model for receptor / odorant interactions.
Camilo Ayra-Pardo
Postdoctoral researcher
Plant Division
CIGB
Havana Havana Cuba
cayrapardo73@gmail.com

My research experience covers the development of applied biotechnological solutions for the control of insect crop pests, as well as, the investigation of molecular aspects of host-pathogen interaction including the molecular mechanisms behind resistance evolution to microbial pesticides.
Kadri Oras
Department of Genetics
University of Cambridge
Cambridge Cambridgeshire United Kingdom
kadri.oras92@gmail.com
Fly facility
I do microinjections into fruit fly embryos, mainly Drosophila Melanogaster. This includes P-element insertions, CRISPR/Cas9 and integrase mediated insertions. I also balance and screen for mutations in the adult flies.
Linda Kothera
Microbiologist
Division of Vector-Borne Diseases
Centers for Disease Control and Prevention
Fort Collins CO US
lkothera@cdc.gov

Genetic changes associated with insecticide resistance in vector mosquitoes.
Tofazzal Hossain Howlader
Associate Professor
Department of Entomology
Bangladesh Agricultural University
Mymensingh Mymensingh Bangladesh
tofazzalh@gmail.com

Bacillus thuringiensis, Entomopathogenic fungi
Stephen Panossian
Laboratory Animal Technician Assistant
Insect Transformation Facility
Institute for Bioscience and Biotechnology Research
Silver Spring Maryland United States of America
stephenpanossian@gmail.com
Insect Transformation Facility
Supporting host-pathogen interaction (mosquito-Plasmodium) research.
Joseph Sarro
Biological Sciences
University of Notre Dame
Notre Dame Indiana United States
jsarro@nd.edu
Senior analyst in bioinformatics
My current research focuses on analyzing next generation sequencing for the purposes of arthropod development, cancer, and more.
Juan Hurtado
Ecology, Genetics and Evolution
IEGEBA - University of Buenos Aires
C.A. Buenos Aires C.A. Buenos Aires Argentina
hurtado.juanp@gmail.com

Reproductive Biology and Evolution
Michelle Anderson
Lab Manager
CV
Fralin Life Science Institute and Department of Entomology
Virginia Polytechnic Institute and State University
Blacksburg VA USA
manderson@vt.edu
Adelman Lab
Research in our laboratory is concerned with understanding the molecular and genetic interactions between arboviruses and their mosquito hosts. Research projects are based in the molecular virology of arboviruses (dengue viruses, Sindbis) as well as the molecular biology and genetic manipulation of the vector mosquito, Aedes aegypti.
Tonya Colpitts
Assistant Professor
CV
Pathology Microbiology & Immunology
University of South Carolina School of Medicine
Columbia SC USA
tonya.colpitts@uscmed.sc.edu
COLPITTS LAB
Our laboratory researches the interactions between arboviruses and mosquito vectors, with a focus on dengue virus and the Aedes midgut. We are also examining the impact of human serum components on mosquito immunity and virus infection and developing transmission blocking vaccines against arboviruses.
Sherry Adrianos
Research Molecular Biologist
Stored Product Insect and Engineering Research Unit (SPIERU)
USDA ARS
Manhattan KS USA
7SherryA@gmail.com
Oppert Lab
We are utilizing CRISPR/Cas technology with a goal to control coleopteran storage pests. Tribolium castaneum genes critical for survival are being targeted. These methodologies will be transferred to other stored product pests.
Isobel Ronai
CV
School of Biological Sciences
The University of Sydney
Sydney NSW Australia
isobel.ronai@sydney.edu.au
Behaviour and Genetics of Social Insects Laboratory
My Ph.D. project is on the genetic and mechanistic basis of worker sterility in the honey bee.
Ewan Richardson
Mr
Biochemistry and Crop Protection
Rothamsted
Brighton Sussex United Kingdom
ewan.richardson@rothamsted.ac.uk

I study the mutations underlying resistance to Diamide insecticides amongst moths. Much of my work revolves around structural study of the Ryanodine Receptor, a calcium channel of major importance in all animals. I use transgenesis to explore the impact of Ryanodine Receptor mutations on pesticide resistance in moths, and to determine whether the same effects can be established in other insect orders.
Erica Lindroth
Testing and Evaluation
Navy Entomology Center of Excellence
Jacksonville Florida USA
erica.j.lindroth.mil@mail.mil

My research focuses on the development and evaluation of vector control technology for military use.
Vanessa Corby-Harris
Research Physiologist
Carl Hayden Bee Research Center
USDA-ARS
Tucson AZ USA
vanessa.corby@ars.usda.gov
Corby-Harris Lab
Our goal is to increase honey bee health through improved nutrition.
Patricia Pietrantonio
Professor and AgriLife Research Fellow
Department of Entomology
Texas A&M University
College Station  TX USA
p-pietrantonio@tamu.edu
Insect Toxicology and Physiology
Insect and tick endocrinology with emphasis in G protein-coupled receptors
Keith Hopper
Dr.
CV
Beneficial Insect Introductions Research Unit
USDA-ARS
Newark DE USA
khopper@udel.edu
USDA-ARS-Beneficial Insect Introductions Research Unit
The central theme of my research is to determine the mechanisms affecting host specificity of parasitic and herbivorous insects. My lab is testing alternative hypotheses about the genetic architecture of specificity: many genes interacting epistatically versus few genes interacting additively. Evolutionary shifts are much less likely under the first hypothesis than under the second. We are studing the genomics and transcriptomics of differences in host specificity among insect species.
Wendy Moore
Assistant Professor, Insect Systematics and Curator
Department of Entomology
University of Arizona
Tucson Arizona United States
wmoore@email.arizona.edu

Dr. Wendy Moore and her lab members investigate the evolution and ecology of terrestrial arthropods. Specific projects focus on arthropod systematics. We use molecular genetic techniques and morphological methods to infer robust phylogenetic frameworks to identify and describe natural groups of terrestrial arthropods, to study their diversification and patterns of distribution, and to elucidate their ecological roles and to assess the impact of key innovations on their evolutionary histories.
Hongwei Yao
Ph.D.
Institute of Insect Sciences
Zhejiang University
Hangzhou Zhejiang Province China
hwyao@zju.edu.cn

Identification and characterization of insecticide detoxification enzymes and their genes, in particular on the role that esterase(s) play in the detoxification of organophosphate and pyrethroid insecticides in rice insect pests
Osama Bin manzoor
Entomology
Huazhong Agricultural University
Wuhan  Hubei  China
osmamanzoor11@hotmail.com

RNAi is a important tool to combat Insect Pests
Anyi Mazo-Vargas
PhD student
Entomology
Cornell University
Ithaca NY US
am2622@cornell.edu
Laboratory of evolution of animal color patterns
I work with wing color patterns in butterflies to answer questions related to the evolution of gene regulation and developmental re-patterning. In my project I am using a mix of old school methods as: in-situ hybridization, antibody stains, drug treatments; and new genomics techniques as: ATAC-seq, RNA-seq and CRISPR-Cas9.
Duverney Chaverra Rodriguez
PhD Candidate
Entomology
Pennsylvania State University
State College Pennsylvania United States
ddc172@psu.edu
Jason Rasgon Lab
My research focuses in exploring and optimizing strategies to produce transgenic insects via maternal injection.
Kim Ferguson
PhD Candidate
Laboratory of Genetics
Wageningen University
Wageningen Gelderland The Netherlands
kim.ferguson@wur.nl

I am an Early Stage Researcher (ESR) in the BINGO ITN, Breeding Invertebrates for Next Generation BioControl, a Marie Skłodowska-Curie Innovative Training Network (www.bingo-itn.eu for more info). Right now I'm in the first stage of my PhD so I'm trying to discover as much as possible and learn techniques to help me in my project. I will work with a few different species, but the goal is to use NGS technology to explore the genetic variation in wild-caught and commercially reared populations of select biocontrol species. I will work with Trichogramma brassicae, Nesidiocoris tenuis, and Amblyseious swirskii (aka Typhlodromips swirskii). They
Luciano Cosme
Ecology and Evolutionary Biology
Yale University
New Haven CT USA
luciano.cosme@yale.edu
Powell's Lab
Mosquito evolutionary genetics. Gene and miR expression.
Amanda Choo
Postdoctoral researcher
Genetics & Evolution
University of Adelaide
Adelaide South Australia Australia
amanda.choo@adelaide.edu.au

Temperature sensitivity, genome manipulation technologies
Lorna Cohen
PhD Candidate
Biological Sciences
University of Illinois at Chicago
Chicago Illinois USA
cohen36@uic.edu
Lynch Lab
I am currently researching the genetic basis of head development in the parasitiod wasp, Nasonia. We aim to elucidate how specific morphologies are encoded in the genome, and the molecular mechanisms that regulate size and shape.
Rick DeRose
External Collaborations and Technology Acquistion
Syngenta
RTP NC USA
rick.derose@syngenta.com

Mechanisms and methods for controlling insects.
Johannes Schinko
Dr. rer. nat.
Comparative developmental biology and regeneration
Institut de Génomique Fonctionnelle de Lyon
Lyon Rhone-Alpes France
johannesschinko@hotmail.com

Genetic interactions during posterior elongation in short germ band insects.
Laura Sirot
Assistant Professor
CV
Biology
College of Wooster
Wooster OH USA
lsirot@wooster.edu
Evolutionary and Applied Reproductive Biology
We are broadly interested in the reproductive behavior of animals, including mechanisms that males and females use to influence reproductive success. Our current research focuses on reproductive behavior and physiology in several species including: the pomace fly (Drosophila melanogaster), the Asian tiger mosquito (Aedes albopictus), and humans.
Tetsuro Shinoda
Division of Insect Sciences
National Institute of Agrobiological Sciences
Tsukuba Ibaraki Japan
shinoda@affrc.go.jp

Molecular mechanisms of juvenile hormone action
Yuemei Dong
Dr.
Dept of Molecular Microbiology and Immunology
Johns Hopkins School of Public Health
Baltimore MD USA
ydong3@jhu.edu

Vector biology, malaria control, mosquito innate immunity, vector-borne infectious diseases
Rolando Rivera-Pomar
Professor and Investigator
Centro de Bioinvestigaciones
Universidad Nacional del Noroeste de Buenos Aires / National Science and Technology Research Council (CONICET)
Centro Regional de Estudios Genómicos
Pergamino Buenos Aires Argentina
rrivera@unnoba.edu.ar
Genetics and functional genomics
Our laboratory is interested in comparative genomics of insects. We study early developmental genes and their regulation with a focus on the segmentation process, insecticide resistance-related genes, and small peptides and neuropeptides in different insect species, some of them of medical and agricultural interest.
Tabashir Chowdhury
PhD candidate
CV
Biology
University of Western Ontario
London Ontario Canada
tabashir@gmail.com

Genetic basis of behavioural isolation and speciation in Drosophila
Fernando Consoli
PhD
Dept of Entomology and Acarology
University of Sao Paulo/ESALQ
Piracicaba Sao Paulo Brazil
fconsoli@usp.br
Insect Interactions Lab
Our lab is dedicated to understand the diversity and role of symbionts in insect bioecology, and to investigate the potential of symbionts for biotechnological exploitation. We also use functional transcriptomic and genomic analyses to investigate insect-insect and insect-symbionts interactions and to develop strategies for pest control (RNAi).
Alexandros Belavilas-Trovas
Department of Biochemistry & Biotechnology
University of Thessaly
Larissa Thessaly Greece
alexbelavilas@hotmail.com
Molecular biology & genomics-Mathiopoulos lab
The analysis of genes involved in the sexual behaviour of the olive fruit fly, Bactrocera oleae. Our purpose is the use of these data for the improvement of the SIT approaches or other innovative pest control strategies
Takaaki Daimon
PhD
Insect Growth Regulation Research Unit
National Institute of Agrobiological Sciences, Japan
Tsukuba Ibaraki Japan
daimontakaaki@affrc.go.jp

Insect genetics and endocrinology
Neetha Nanoth Vellichirammal
Postdoctoral Research Associate
Department of Entomology
University of Nebraska-Lincoln
Lincoln NE USA
neethav@gmail.com

I am a Postdoctoral researcher at the Department of Entomology, University of Nebraska- Lincoln, working with non-model insects. I am broadly interested in understanding the genetics of complex phenotypes. I work with pea aphids that are excellent laboratory models to investigate environmental control of developmental plasticity. I also work with economically important pests of corn including European corn borer and Western corn rootworm. My research revolves around understanding complex biological processes for example, maternal signals contributing to developmental plasticity in pea aphids, understanding mechanisms of insect resistance to transgenic plants and developing novel pest control mechanisms using genome editing.
Aine O’Sullivan
Department of Entomology
Penn State University
University Park PA USA
aiosullivan29@gmail.com
Grozinger Lab
My research is focused on how bumble bee health can be improved by implementation of different genetic technologies to mitigate the effects of abiotic and biotic stressors.
Jacob Riveron
Postdoctoral Research Assistant
Vector Biology
Liverpool School of Tropical Medicine
Liverpool Merseyside United Kingdom
jacob.riveron@lstmed.ac.uk
Vector Biology -LSTM
My current research focus is on understanding the molecular basis underlying the insecticide resistance in the African malaria-mosquito, Anopheles funestus, using functional analyses. I also have interest in the functional characterization of genes involved in insecticide resistance in agricultural pests, in insect behavior, and in the elucidation of the molecular basis of the olfaction in Drosophila melanogaster and in malaria and dengue vectors.
Angela Meccariello
Ph.D. student
CV
Department of Biology
University of Naples 'Federico II'
Naples Italy Italy
angela.meccariello@unina.it
Insect Molecular Genetics and Biotechnology
Genetics and transcriptomics of sex determination in pest insects: Aedes albopictus Ceratitis capitata Phlebotomus perniciosus
sekhar srikakolapu
Mr.
CV
laboratory of molecular genetics
Center for DNA fingerprinting and Diagnostics
hyderabad Andhra Pradesh india
sekharsri5@gmail.com
Laboratory Of molecular genetics
Elucidation of alternative Splicing mechanism and genome editing through CRISPR Cas9 in Bombyx mori
Dina Fonseca
Professor
Entomology; Ecology&Evolution, Public Health
Rutgers University
Center for Conservation and Evolutionary Genetics, Smithsonian
New Brunswick NJ USA
dinafons@rci.rutgers.edu
Fonseca
My primary research interests are the evolution, prevention, and control of invasive mosquitoes, the principal vectors of significant disease epizootics and epidemics. Our results indicate that populations differ in vectorial capacity over space and time, profoundly affecting epidemiological landscapes and risk estimates. Rapid evolution in invasive mosquito vectors is a good model for the effects of Global Climate Change on disease epidemiology.
Anna-Louise Doss
Graduate Student Researcher
Cell, Molecular and Developmental Biology Graduate Program
University of California, Riverside
Riverside California United States
adoss001@ucr.edu
Peter Atkinson Lab
My dissertation research centers on elucidating DNA transposon structure and function and, reciprocally, on exploiting transposons as robust genetic tools in the field of mosquito-borne disease control.
Justin Overcash
Graduate Research Assistant
Genetics
Texas A&M
College Station Texas USA
justmo1@vt.edu
Adelman Lab
DNA double stranded break repair, manipulation of the classical non-homologous end joining pathway to achieved desired gene editing, gene drive mechanisms in Aedes aegypti & CRISPR/Cas9 gene editing techniques
Michalis Averof
IGFL
CNRS
Lyon Rhone France
michalis.averof@ens-lyon.fr

Comparative developmental biology and regeneration
Andrea Gloria-Soria
Associate Research Scientist
Ecology and Evolutionary Biology
Yale University
New Haven CT USA
andrea.gloria-soria@yale.edu
Powell Lab & Turner Lab
I am an evolutionary biologist interested on the behavioral genetics of feeding behavior in mosquitoes and its consequences for dengue transmission. I also conduct population genetic studies on Aedes aegypti mosquitos to understand historical and recent invasions.
Kalindu Ramyasoma
Post Graduate Student
CV
Department of Chemistry
Faculty of Science, University of Colombo
Colombo 03 Western Province Sri Lanka
kd.ramyasoma@gmail.com
Biotechnology Laboratory
My research interest focused to engineering RNA interference based resistant to all Dengue serotypes in Aedes aegypti vector mosquitos using transgenic technology. Genetic manipulation of Aedes mosquitos express RNAi genes in mosquito tissues under control of tissue specific promoters and genes repress or inhibits the expression of dengue viral proteins.
Akhtar Rasool
Assistant Professor
Centre for Animal Sciences and Fisheries
University of Swat
Mingora, Swat Khyber Pakhtunkhwa Pakistan
akhtarrasool@hotmail.com
Insect Molecular Biology Lab
I am interested in insect molecular biology mainly, insect evolved resistance mechanisms against chemical and biological insecticides. My research focuses is lepidopteran pests, one of the diverse pest insect order and which have threaten agriculture because they have evolved resistance to a wide range of pesticides.
sarah boyd
AWP
AWP
beacon NY United States
sarah.hoover.boyd@gmail.com
AWP
This is a sample entry.
Isabel Campos
Fly Platform Manager
Fly Platfrom
Champalimaud Foundation
Lisboa Lisboa  Portugal
isabel.campos@neuro.fchampalimaud.org
CF Fly Platform
The CF Fly Platform contributes to CF researchers’ best performance by providing state of the art conditions for fly breeding, maintenance and manipulation, at the same time as offering a range of technical services conducted by a specialized team, headed by an experienced manager with more than 10 years of Drosophila genetics post doctoral training.
Molly Shook
Postdoctoral Associate
Institute for Genomic Biology
University of Illinois
Urbana Illinois United States
mshook@illinois.edu

Epigenetics of aggression in honey bees
Flor Acevedo
Graduate student
Entomology
The Pennsylvania State University
University Park PA United States
floredith.acevedo@gmail.com

Functional genomics, insect transformation, plant defense response to biotic stresses, chemical ecology,
Kimberly Johansson
Undergraduate Researcher
Organismic and Evolutionary Biology
Harvard University
Cambridge MA USA
kimberly.johansson@gmail.com
Extavour Lab
im is an undergraduate in the class of 2015 at Harvard College, where she is concentrating in Chemical & Physical Biology. In the Extavour Lab, she works with Taro Nakamura studying primordial germ cell development in the cricket, Gryllus bimaculatus.
Konstantina Tsoumani
Post-Doctoral Research Associate
CV
Biochemistry and Biotechnology
University of Thessaly
Larissa Thessaly Greece
kotsouma@bio.uth.gr
Molecular biology & Genomics - Mathiopoulos Lab
Genomic and transcriptomic analyses using NGS data, identification and functional analyses of genes involved 1) in reproductive behaviour including the olfactory and gustatory systems of the olive fruit fly, as well as 2) in embryogenesis, that can be used in the development of new genetic control strategies of the olive fly.
Paula Roy
PhD Aspirant
Ecology and Evolutionary Biology
University of Kansas
Lawrence KS United States
paularoy@ku.edu

The genetics of the behavior of Drosophila courtship.
Adenike Adeyemo
Dr Mrs
Department of Biology, School of Sciences
Federal University of Technology, Akure, Nigeria
Akure,  Ondo State Nigeria
yemonike@yahoo.com
Food Storage Laboratory, Department of Biology
Stored products Entomology, Insect biochemistry with emphasis on mode of action of bio -pesticides in insects
MARIA ELENI GRIGORIOU
Biochemistry- Biotechnology
University of Thessaly
Larissa Larissa Greece
magrigoriou@bio.uth.gr
Marilena
Transcriptomic analysis of the reproductive system of Bactrocera oleae. Detection of molecules involved in reproduction.
Keshava Mysore
PhD
CV
Medical and Molecular Genetics
Indiana University School of Medicine - University of Notre Dame
South Bend Indiana USA
kmysore@iu.edu
Duman-Scheel Lab
I am currently studying functional and developmental neurogenetics of the dengue vector mosquito Aedes aegypti.
John Chaston
Assistant Professor
Genetics & Biotechnology
Brigham Young University
Provo UT USA
john_chaston@byu.edu

genetic basis for Drosophila-microbiota interactions
Laura Harrington
Professor
Department of Entomology
Cornell University
Ithaca NY USA
lch27@cornell.edu
Harrington lab
Research in the Harrington lab focuses on mosquito vector ecology, biology, and behavior. Our goal is to understand basic (and often overlooked) aspects of mosquito biology in order to identify new targets for controlling mosquitoes and reducing transmission of vector-borne diseases.
Maureen Gorman
Research Assistant Professor
Biochemistry and Molecular Biophysics
Kansas State University
Manhattan Kansas USA
mgorman@ksu.edu

Iron metabolism is a vital biological process in all eukaryotic organisms, but the mechanisms of iron metabolism in insects are poorly understood. Our research is focused on iron transport and the relationship between iron metabolism and innate immunity in insects. We use a combination of genetics, molecular biology and biochemistry methods to study iron metabolism and innate immunity in Drosophila melanogaster, Anopheles gambiae, Manduca sexta, and Tribolium castaneum. These studies should lead to a better understanding of two fundamental components of insect physiology and, thus, provide information that can be used in future efforts to control insect
Karl Joplin
Associate Professor
Biological Sciences
East Tennessee State University
Johnson City Tennessee USA
joplin@etsu.edu
Karl Joplin
Physiology and molecular biology of diapause, Insect behavior and circadian rhythms, Stress response of insects
Bryony Bonning
Director, NSF I/UCRC
Department of Entomology
University of Florida
Gainesville Florida USA
bbonning@ufl.edu
Insect Management Technology
Molecular interactions between viruses and insects, and between microbe-derived insect toxins and their receptors. Fundamental knowledge of these interactions is then used to optimize current insect pest management strategies and to develop novel environmentally benign solutions.
Robert Waterhouse
Marie Curie International Outgoing Fellow
Department of Genetic Medicine and Development
University of Geneva Medical School
Geneva Geneva Switzerland
robert.waterhouse@unige.ch
Computational Evolutionary Genomics Group
Evolutionary genomics of mosquitoes and other insects.
Geoffrey Attardo
Assistant Professor
CV
Entomology and Nematology
University of California, Davis
Davis CA United States
gmattardo@ucdavis.edu

My research focuses upon the reproductive biology of insect vectors of human disease. My Ph.D. thesis in Dr. Alex Raikhels lab focused upon the effects of nutritional components of blood (amino acids) upon the transcriptional regulation of yolk protein genes in the Yellow Fever mosquito (Aedes aegypti). Following that I worked for 13 years, first as a Postdoc and then a Research Scientist, at Yale University with Dr. Serap Aksoy on the reproductive biology of tsetse flies. I have recently started a lab group in the Entomology and Nematology Department at the University of California, Davis. My work here is
Shengzhang Dong
Ph.D
Department of Molecular Microbiology and Immunology
Johns Hopkins School of Public health
Baltimore MD USA
dongshzhang@gmail.com

Aedes mosquito-arbovirus interactions; Anopheles mosquito-Plasmodium parasite interactions; insect miRNAs; insect immunity; insect physiology and molecular biology.
David Majerowicz
Msc., PhD.
Faculdade de Farmacia
Universidade Federal do Rio de Janeiro
Rio de Janeiro Rio de Janeiro Brazil
majerowicz@pharma.ufrj.br

Use of insect as models for lipid metabolsim and obesity; Role of nuclear receptors and hormones in the control of lipid metabolism; Role of nuclear receptors in the Rhodnius prolixus - Trypanossoma cruzi interaction.
Claire Donald
Miss
MRC-University of Glasgow Centre for Virus Research
University of Glasgow
Glasgow GLASGOW Scotland, UK
1103886d@student.gla.ac.uk
Kohl Lab
The Kohl group works on RNA interference, immune signalling pathways and virus/host interactions in arthropod vectors by using arboviruses or virus-derived replicons from all major families. The aim of my work is to further understand the interaction of arboviruses with the RNAi responses of their mosquito vector.
Fillip Port
PhD
Division of Signaling and Functional Genomics
DKFZ German Cancer Research Center
Heidelberg BW Germany
fport@mrc-lmb.cam.ac.uk

We develop methods for CRISPR/Cas genome engineering in Drosophila melanogaster. Our tools and protocols are freely available via our website crisprflydesign.org, the plasmid repository Addgene and the Bloomington Drosophila Stock Center.
Natalia Vinasco Arias
Biological Control Researcher
Caldas University
Manizales Caldas Colombia
vinasco.natalia@gmail.com

I'm Agronomic Engineer with specialization in Biological Control, IPMs and Biology Molecular of Insects pest. In this moment, I'm working in paratiroides of order Diptera for control of weevils and other pest of citrus and fruits of region. Also, I´m working in peptides antimicrobial of plants for include in the control of bacterias and insects pest.
Brittany Dodson
Entomology
Pennsylvania State University
University Park PA USA
bld25@psu.edu

Recently there has been a lot of excitement surrounding the study of microorganisms that live inside us and how they influence our health. Insects also have relationships with their own microorganisms, but most research surrounding them has merely been descriptive. Medically important insects (like mosquitoes) vary in their ability to transmit pathogens, possibly due to differences between internal environments of those insects. Studies have found that mosquito bacteria abundance and diversity may impact malaria parasites. However, the identity, function and utility of those microbes are virtually unknown, especially in mosquitoes that transmit viruses. I am investigating how bacteria within the mosquito
philip Ndaloma
Lecturer
CV
Plant and Soil Sciences
Cuttington University
Monrovia Gbarnga  Liberia
firstnamephilipndaloma@yahoo.com

Climate change impact on the re-occurrence of army worm
Wang Liuhao
School of Resource and Environment Science
Henan Institute of Science and Technology
Xinxiang Henan China
liuhaowang2007@163.com

Heat shock transcription factor of Bemisia tabaci
Patricia Jumbo Lucioni
Postdoctoral research scholar
Biological Sciences
Vanderbilt University
Nashville TN USA
patricia.jumbo@vanderbilt.edu
Postdoctoral Research Scholar-Broadie Lab
My current research field addresses the unknown mechanisms behind inborn errors of metabolism, classic galactosemia and congenital disorders of glycosylation. Patients with these disorders grow to develop neurodevelopmental complications of unknown mechanism which lack appropriate treatment. I use fruit flies as genetic models to characterize these phenotypes and elucidate disease mechanisms underlying these chronic inborn deficits.
chuanwang cao
Associate professor
School of Forestry
Northeast Forestry Univeristy
Haerbin Heilongjiang CHINA
chuanwangcao@126.com

I focus on the following two research areas: 1. forest entomology toxicology; 2. environmental toxicology.
Michelle Brown
Vice President & Chief Scientist
R & D
Olfactor Laboratories Inc
Riverside California United States
mbrown@olfactorlabs.com

Olfactor Laboratories, Inc. (OLI) is designing and developing innovative products that can be part of the world-wide strategy to significantly reduce diseases spread by insects and lower the general nuisance caused by their proximity to humans. Our initial research is focused on mosquitos as they are a major cause of the spread of many debilitating and potentially lethal diseases around the world. By using safe chemicals to disrupt the insect’s olfactory system (the primary mechanism used in locating a human or other animal to use as a source of a blood-meal), OLI’s efficient and cost-effective products will seek to protect humans
Kimberly Paczolt
Postdoctoral Fellow
CV
Biology
University of Maryland
College Park Maryland USA
kpaczolt@umd.edu
Wilkinson Lab
I am studying the evolution of the meiotic drive X chromosome in stalk-eyed flies (Teleopsis dalmanni) from both a genetic and organismal perspective. First, I am working to identify genes involved in the meiotic drive pathway, which has arisen independently from other well known drive systems. Second, I am interested in understanding how the meiotic drive X chromosome affects the evolution of morphology and behavior in populations and species of stalk-eyed flies.
Julia Bristow
Biological Sciences
Syngeta
Bracknell Berkshire England
Julia.Bristow@syngenta.com

Molecular Biology and Genetics
Komal kumar Bollepogu Raja
student
Biochemistry and Molecular biology
Michigan Technological University
Houghton Michigan USA
kbollepo@mtu.edu

Studying complex color patterns in new model organisms
Huizhen Guo
Southwest University
The state key laboratory of silkworm genome biology
Chongqing Chongqing China
guohuizhen.111@163.com
the state key laboratory of silkworm genome biology
My major is biochemistry and molecular biology, and my research is mainly focus on the lepidoptera chemosensory gene families, especially Gr genes.
Jonathan Bobek
School of Life Sciences
Arizona State University
Tempe Arizona United States
jonathan.bobek@asu.edu
Gro Amdam Lab
I am interested in the genetic underpinnings of behavior and physiology in the honeybee, Apis Mellifera. Previously I have studied artificial flower color choice of free-flying honeybee foragers, examining relative expression through microarray. I am currently examining gene candidates which may be involved in the transition from nurse to forager roles.
Alekos Simoni
Department of Life Sciences
Imperial College London
London London United Kingdom
a.simoni@imperial.ac.uk

Applying state of the art molecular biology to vector control with the aim of reducing malaria transmission
Simon Collier
PhD
Department of Genetics
University of Cambridge
Cambridge Cambridgeshire UK
psc38@cam.ac.uk
Fly Facility
Drosophila genome modification Planar Cell Polarity
Simon Groen
PhD
Department of Ecology and Evolutionary Biology
University of Arizona
Tucson Arizona United States of America
scgroen@email.arizona.edu
Whiteman Lab
Plant-insect interactions
Brian Counterman
Biological Sciences
Mississippi State University
Starkville MS USA
bcounterman@biology.msstate.edu

Evolution, Population Genomics, Speciation
Takuya Tsubota
Transgenic Silkworm Research Unit
National Institute of Agrobiological Sciences
Tsukuba Ibaraki Japan
tsubota@affrc.go.jp
Transgenic Silkworm Research Unit
My research is concerned with the development of silkworm transgenic technique and its application. I succeeded in identifying a novel silkworm strong and ubiquitous promoter, that is, hsp90 promoter. Using the novel techniques, I want to clarify lepidopteran-specific biological phenomena such as gene regulation in the silk gland.
Tamsin Jones
Organismic and Evolutionary Biology
Harvard University
Cambridge MA USA
tjones01@fas.harvard.edu
Extavour Lab
I am interested in the evolution of germ line genes and their function. My current project examines the evolution of the oskar gene in insects. In flies, oskar is essential for germ line development, but in the cricket Gryllus bimaculatus, oskar functions in neural development. I am studying the molecular function of oskar in the cricket early nervous system.
Antonio Celestino Montes
PhD Student
Molecular Pathogenesis
CINVESTAV-IPN
Mexico City D.F. México
clonfago_t4@hotmail.com
Molecular Entomology
We are interested in knowing the process of developing the mosquito Aedes aegypti vector of dengue virus and the participation of the immune system in host pathogen interaction
Diana Cox-Foster
Professor
Entomology
Penn State
Univ. Park PA USA
dxc12@psu.edu
Cox-Foster Lab
My Lab is interested in host/pathogen interactions. We are interested in genes associated with the immune system and cuticular exoskeleton (biosynthesis and molting). We are interested in immune responses to viruses, and responses to parasites such as nematodes and varroa mites. In particular, the anti-viral immune responses are of interest, going from point of infection to death of the insect host.
Ifeoma Ezugbo-Nwobi
Parasitology and Entomology
Nnamdi Azikiwe University
Awka Anambra Nigeria
ifeomaezugbonwobi@yahoo.com
Parasitology and Entomology Research Lab
Focused on understanding vector-borne diseases like Malaria, Lymphatic filariasis, Onchocerciasis, Dengue, Yellow fever, etc, so that better control measures can be developed. I seek to integrate traditional parasitological and entomological procedures with molecular genetics and bioinformatics-based technologies to deliver new insights into vector biology and ecology.
Daniel Bopp
Dr
Institute of Molecular Life Sciences
University of Zurich
Zurich Zurich Switzerland
daniel.bopp@imls.uzh.ch
Evolution of sex determination pathways
We are studying the evolution of sex determining pathways by comparing the pathway in Drosophila melanogaster to those of the housefly Musca domestica and the red flour beetle Tribolium castaneum. We find that the genes at the end of the Drosophila pathway, doublesex and its direct regulators, transformer and transformer2 are highly conserved and probably part of an ancient module that controls sexual differentiation in holometabolous insects . In contrast, genes upstream at the signaling end of the cascade have largely diverged between the different insect species. We are presently analysing the structure and function of such regulatory genes
Isidoro Feliciello
Dr.
Department of Clinical Medicine and Surgery
University of Naples Federico II
Napoli NA Italy
ifelicie@unina.it
Laboratory of Experimental Biology
Satellite DNAs of the red flour beetle Tribolium castaneum: roles in genome dynamic and gene expression.
Helena Richardson
Group Leader
CV
Research
Peter MacCallum Cancer Centre
Melbourne V ictoria Australia
Drh_richardson@yahoo.com.au
Cell cycle and development lab
My research ulilizes the vinegar fly, Drosophila, to model tumourigenesis, with the vision of understanding how regulators of cell polarity and the actin cytoskeleton impact on cell signalling and cell proliferation, a field in which she is internationally recognised. She collaborates with mammalian researchers to translate her findings to mouse and human cancer models.
Jozef Vanden Broeck
Prof. Dr.
Animal Physiology and Neurobiology (Dept. of Biology)
University of Leuven
Leuven Flanders Belgium
Jozef.VandenBroeck@bio.kuleuven.be
Molecular Developmental Physiology and Signal Transduction
This research group is investigating the physiological role and mode of action of neural and endocrine messenger molecules in postembryonic developmental processes. These processes are studied in an evolutionary context by comparative approaches. In particular, we are studying receptors and their signal transduction pathways in insect cells. Our aim is to unravel the cellular and organismal physiological mechanisms that regulate important post-embryonic developmental processes, such as growth and reproduction. The group is also interested in the influence of environmental factors that can lead to the extreme phenotypic plasticity of locust species. In addition, application-oriented research is carried out to explore novel
Kristen Brochu
Entomology
Cornell University
Ithaca NY USA
kb532@cornell.edu

I study the digestive adaptations involved in specialist vs. generalist bee diet preferences.
Panagiota Koskinioti
Biochemistry & Biotechnology
University of Thessaly
Larissa Thessaly Greece
pakoskin@bio.uth.gr

My research focuses on the role of the host preference and the presence of symbionts in the genetic profile of the Mediterranean fruit fly.
Musa Mohammedani
federal ministry of health
environmental health/ entomologist
university of khartoum
Khartoum Khartoum Sudan
mmmusamhd09@gmail.com

Genetic and molecular biology
Adriana Costero-Saint Denis
Vector Biology Program Officer
Div. of Microbiology and Infectious Diseases
National Institute of Allergy and Infectious Diseases, NIH
Rockville Maryland USA
acostero@niaid.nih.gov

Vector biology
Rodney Richardson
Department of Entomology
The Ohio State University
Columbus  Ohio USA
richardson.827@osu.edu

My research efforts focus on issues pertaining to toxicology and immunology in the European honey bee. Specifically, I am interested in the discovery and mechanistic explanation of how environmentally encountered xenobiotics affect insect immune function.
carole long
Chief, Malaria Immunology Section
Laboratory of Malaria and Vector Research
NIAID/NIH
Rockville MD USA
clong@niaid.nih.gov
Malaria Immunology Section
Immunity to malaria parasites including sexuals stages Vaccine development Field studies in Mali Studies of sexual stages of malaria parasites in culture and in the mosquito Mosquito membrane feeding assays and blocking of transmission with drugs or vaccines
Christopher Jones
Associate Professor
Biological Sciences
Moravian College
Bethlehem PA United States
jonesc@moravian.edu

My lab focuses primarily on behavioral genetics, currently a phenotype in Drosophila called "bang-sensitivity," in which subjecting the flies to strong physical shocks (as in a standard lab vortex) triggers seizures.
John Belote
Professor
Biology Department
Syracuse University
Syracuse NY USA
jbelote@syr.edu
Belote Lab
In collaboration with the Scott Pitnick lab (Syracuse University) we are studying mechanisms of post-mating sexual selection in a variety of insects, including Drosophila, Tribolium, sepsids and yellow dung flies.
John Tower
Professor
CV
Biological Sciences
University of Southern California
Los Angeles California United States
jtower@usc.edu
Tower Lab
Gene expression during aging and predictive biomarkers of life span. Sexual antagonistic pleiotropy and p53. MnSOD and the mitochondrial unfolded protein response UPRmt 3D video tracking of flies including GFP
Derric Nimmo
Product Development Manager
Public Health Research
Oxitec
Abingdon Milton Park United Kingdom
derric.nimmo@oxitec.com

My career has given me a broad background in insect and parasite molecular biology. My PhD. looked for novel mechanisms of drug resistance in Leishmania sp. leading to postdoctoral work that concentrated on the genetic transformation of mosquitoes (Ae. aegypti, An, stephensi and An, gambiae) and the development of site-specific integration systems for genes. I started at Oxitec in 2005 as Head of Public Health Research with the aim of developing new RIDL systems in mosquitoes, supported by a Gates grant of $5 million. From this work we produced the new products in mosquitoes and published this work in Nature
Kostas Iatrou
Prof
Institute of Biosciences & Applications
National Centre for Scientific Research 'Demokritos"
Aghia Paraskevi (Athens) Attiki Greece
iatrou@bio.demokritos.gr
Insect Molecular Genetics and Biotechnology
Developmental biology of oogenesis in lepidopteran insects (Bombyx mori model) and olfaction in anopheline mosquitoes (Anopheles gambiae model). Identification of insect endocrine regulators and methods for fast identification of mosquito attractants and repellents of natural origin. Molecular biology and engineering of baculoviruses (BmNPV and AcNPV models) for development as insect transduction and transformation vectors.
Reed Johnson
Department of Entomology
The Ohio State University
Wooster OH USA
johnson.5005@osu.edu

In our lab we are seeking to understand how pollinators interact with the pesticides and toxins they encounter. The managed European honey bee, Apis mellifera, serves as a model pollinator for toxicological testing and toxicogenomics. While the honey bee is the most economically important pollinator in the U.S. and serves as an excellent model species, we are also interested in other pollinating insects as well.
Mark Guillotte
Molecular Microbiology and Immunology
University of Maryland Baltimore
Baltimore Maryland United States
mguil33@gmail.com

Vector-borne disease
George Roderick
Professor and Chair
Environmental Science
UC Berkeley
Berkeley CA USA
roderick@berkeley.edu

Invasive species, population biology, biodiversity, sustainability, biological control, global homogenization
Hadley Horch
Associate Professor
CV
Biology and Neuroscience
Bowdoin College
Brunswick Maine United States
hhorch@bowdoin.edu
Horch Lab
The Horch lab uses the cricket model system to examine the molecular neurobiological basis of injury-induced compensatory plasticity. Unlike many neuronal systems, the auditory system of the cricket demonstrates robust neuronal growth in response to deafferentation. Removing one ear induces auditory interneurons to sprout new dendrites, grow abnormally across the mid-line, and form synapses with intact auditory neurons from the opposite ear. Our research aims to unearth the molecular basis of these anatomical changes as well as understand the cellular and funcitonal consequences of this plasticity. We are also attempting to develop transgenic lines with targeted
Seth Donoughe
Organismic and Evolutionary Biology
Harvard University
Cambridge MA USA
seth.donoughe@gmail.com

Insect development and evolution
Christopher Jones
Dr
AgroEcology
Rothamsted Research
Harpenden Hertfordshire United Kingdom
christopher.jones@rothamsted.ac.uk
Post-doctoral Researcher
I have worked with insects of both medical and agricultural importance to understand the genetic basis of phenotypes, and in particular, insecticide resistance. I currently study insect migration in the cotton bollworm, Helicoverpa armigera, combining tethered flight assays with genomic approaches to understand the genetic basis of this phenomenon.
Markus Brown
Entomology
University of Maryland
Beltsville MD USA
markus.a.brown@hotmail.com

Cells experience a variety of stresses in their environment, whether from friend, foe, or terrain, and must adapt to their changing environment to maintain their survival. This occurs in two ways, evolution and epigentic modifications. Evolution is the much slower process by which the cell permanently alters the enzymes in its arsenal, whilst epigenetics are a quick, temporary change in pace caused by fleeting stresses in the environment. I hope to elucidate the mechanisms by which fungi use epigenetics to quickly mediate and monitor their gene expression profiles in response to alterations in their environment.
Chaoyang Zhao
Entomology
Ohio State University
Wooster OH USA
zhaochaoyang2009@gmail.com

I am interested in understanding the molecular mechanism underlying the process of insect-plant interaction. My current research focuses on the characterization of horizontally transferred genes gained by the emerald ash borer (Agrilus planipennis) from microorgansims, which may have increased insect adaption to harbor distinct ecological niches. I had also been working on the Hessian fly (Mayetiola destructor), attempting to understand how it interacts with its host plant - wheat. Using genetic mapping and genome sequence-based tools, we have discovered three avirulence genes or gene candidates (vH6, vH24 and vHdic) in the Hessian fly, which supports the gene-for-gene hypothesis and the
Anna-Maria Botha
Professor PhD
Genetics
Stellenbosch University
Stellenbosch Western Cape South Africa
ambo@sun.ac.za
Cereal Genomics
The Genomics research group at Stellenbosch, headed by Prof. Anna-Maria Botha-Oberholster aims to be at the forefront of research on wheat (Triticum aestivum L.) resistance to Diuraphis noxia (Kurdj., Hemiptera, Aphididae), although other important plant stressors are also under investigation. Our research is hypothesis driven and fundamental in nature, but aims to address current problems relevant to the agricultural community. Research focus Russian wheat aphid resistance Research in the Cereal Genome programme focuses on the elucidation of the underlying genetic mechanisms involved in host-pest interactions by making use of genomic tools. Understanding defence mechanisms in the wheat host and how
Bhaskar Roy
Dr.
CV
BGI- shenzhen , Beijing Research Institute
BGI, Beijing Research Institute
BGI, Beijing Genome Institute
Shenzhen  Shenzhen China
linkbhaskar@gmail.com
BGI
Insect Molecular Biology,Cancer Biology ,
Monique van Oers
Prof dr
Laboratory of Virology
Wageningen University
Wageningen Gelderland Netherlands
monique.vanoers@wur.nl
Insect Virology
Insect virus host interactions, baculoviruses, SGHV, iridovirus, lepidoptera, Glossinia, Spodoptera exigua, behavioral manipulation, virus entry mechanisms
Nico Posnien
Department of Developmental Biology
Georg-August-University Göttingen
Göttingen Lower Saxony Germany
nico.posnien@gmail.com

My main focus of our research is understanding the molecular basis of natural variation in complex morphological traits. We mainly work on insect and spider systems and apply genome wide approaches in combination with classical developmental biology methods.
Mostafa Ghafouri Moghaddam
Ph.D candidate
Plant Protection
University of Zabol
Zahedan Iran Iran
m.ghafourim@yahoo.com

Systematic Braconidae and Ichneumonidae
Graham Thompson
Associate Professor
Biology
Western University
London Ontario Canada
graham.thompson@uwo.ca
The Social Biology Group
My lab studies the biological basis of insect social behaviour; how it evolves, how it is maintained and why some species are social while others are not. Much like human societies, eusocial ants, bees, wasps and termites show bewildering complexity in how their societies are structured. Yet for insects, this complexity is derived from an economically simple division of labour into reproductive and non-reproductive specialists. Studying reproductive division of labour in insects at the level of the gene can provide key insights into how complex social systems evolved from simpler, ancestral ones. Studies on social insects can also help understand
Gerald Wilkinson
Professor
Biology
University of Maryland
College Park Maryland USA
wilkinso@umd.edu
Wilkinson Lab
Stalk-eyed flies are being used as a model system for studying the evolution of sexually selected traits. Our recent empirical and theoretical results have surprisingly implicated meiotic drive as a potent evolutionary agent which can catalyze sexual selection. Using quantitative trait locus studies we have shown that sex-linked genes that influence a sexually selected trait are linked to genes causing sex chromosome meiotic drive. By hybridizing genomic DNA to custom Agilent microarrays we also discovered that stalk-eyed flies contain a neo-X chromosome and that genes have moved both onto and off of this chromosome. We are currently using
Guy Bloch
Prof.
Ecology, Evolution, and Behavior
Hebrew University of Jerusalem
Jerusalem - None - Israel
guy.bloch@mail.huji.ac.il
Molecular Sociobiolgy
The main research interests of our group are the evolution and mechanisms underlying sociality and social behavior, we study bees as a model. To study these fascinating and intricate phenomena we integrate analyses at different levels, from molecular to social. In recent years, one of our main research focuses has been the interplay between circadian rhythms and social behavior ("sociochronobiology").
Laura Boykin
Dr.
ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry
The University of Western Australia
Crawley Western Australia Australia
laura.boykin@uwa.edu.au

I am interested in invasive species (Influenza, Hepatitis C, Carribbean Fruit fly, Whitefly, Asian citrus psyllid, Gypsy moth, Aphid parasitoid, and the Oriental Fruit Fly). My expertise in genomics, phylogentic theory and utilisation of supercomputers has made a substantial contribuion to understanding the evolutionary history of the invasive species. My most influential work has come from contributions (12 publications) to understanding the evolutionary relationships of the whitefly (Bemisia tabaci), the vector of the devastating Cassava Mosaic Viruses.
Leigh Boardman
Dr
Entomology & Nematology
University of Florida
Gainesville Fl USA
lboardman@ufl.edu

Integrative and comparative biology, genotype-phenotype interactions and the molecular mechanisms underlying organismal tolerance to environmental stressors
N Wybouw
Entomology
Gent University
Gent Oost-Vlaanderen Belgie
nicky_wybouw@hotmail.com

xenobiotic metabolism of phytophagous arthropods
Giuseppe Saccone
PhD, Assist. Professor
Department of Biology
University Federico II of Naples
Naples Italy Italy
giuseppe.saccone@unina.it
Sex Evo Devo
Evolution of sex determining genes and networks in dipteran species of economic or medical relevance. Molecular entomology and Insect Biotechnology. We have uncovered in the mediterranean fruitly Ceratitis capitata a key epigenetic gene for female sex determination, Cctra(ep), which has an additional autoregulatory function compared to the Drosophila tra orthologue, which lost it. In Ceratitis, as in Drosophila, Cctra(ep) controls the splicing of the downstream doublex and fruitless genes. We and others have found that this evolutionary version of transformer(ep) is a master gene for female sex determination widely conserved in Diptera, Hymenoptera and Coleoptera. We have developed a
Heiko Vogel
Dr.
Department of Entomology
Max Planck Institute for Chemical Ecology
Jena Thuringia Germany
hvogel@ice.mpg.de
Research Group Leader
Insect Genomics; Innate Immunity; Molecular Evolution; Plant-Insect Interactions; Detoxification; Insect adaptation to extreme ecological niches.
Subbarayalu Mohankumar
Professor
Plant biotechnology
Tamil Nadu agricultural university
Coimbatore Tamil Nadu India
Smktnau@gmail.com
Molecular ecology
Molecular ecology of crop- pest interactions, diversity of pollinators , IPM, pest genetics and genomics
Umut Toprak
Associate Professor
CV
Plant Protection/Entomology
Ankara University
Ankara Ankara Turkey
utoprak@agri.ankara.edu.tr
Molecular Entomology (MOLEN) Lab.
My primary research goals are directed towards understanding insect physiological systems using molecular tools and developing new insect control strategies targeting these systems. My current research is focused on: 1) Identification of insect midgut genes and understanding their functions, specifically in lepidopterans and coleopterans 2) Understanding insect lipid metabolism, particularly related to diapause 3) Development of baculoviral biopesticides and their formulation by synergistics targeting insect midgut defense physiology and function
Patricia Wittkopp
Associate Professor
Ecology and Evolutionary Biology
University of Michigan
Ann Arbor Michigan USA
wittkopp@umich.edu
Wittkopp lab
Our research investigates the genetic basis of phenotypic evolution. The evolution of development, especially mechanisms controlling gene regulation, are of particular interest. Molecular and developmental biology, population and quantitative genetics, genomics and bioinformatics are integrated in this work.
Marla Sokolowski
University Professor
Department of Ecology and Evolutionary Biology
University of Toronto
Toronto Ontario Canada
marla.sokolowski@utoronto.ca
Sokolowski Lab: Genes, Environment and Behaviour
We are interested in how DNA variation predisposes organisms to be more or less affected by their experiences (gene-environment interactions), how our experience gets embedded in our biology (epigenetics) and finally how DNA variation interacts with epigenetic processes to affect behavior. Experiential affects, like developmental ones can occur on different time scales. For example nutritional or social adversity (or enrichment) can occur throughout an organisms life, in early life alone with enduring effects on later life stages, or acutely over a matter of minutes or hours. To address these issues we take a genetic perspective using mostly Drosophila melanogaster but
Tatiana Torres
Assistant Professor
Genetics and Evolutionary Biology
University of Sao Paulo
Sao Paulo SP Brazil
tttorres@ib.usp.br
Genomics and Evolution of Arthropods
Our research focuses on the investigation of patterns of variability observed in genes and genomes, particularly regulatory variation, and understanding the underlying evolutionary processes involved in the emergence of these patterns. To pursue this we use insects and other arthropods as model organisms.
CRISTINA MANJON
Postdoctoral Researcher
Insect toxicology and Resistance
Bayer CropScience
Monheim NRW Germany
cristina.manjon@bayer.com
Insect toxicology and Resistance Lab
I am a researcher part of the Resistance Management team working closely with Ralf Nauen at Bayer CropScience. I am interested in the study of the detoxification mechanisms that operate in beneficials as well as in different pest species that develop insecticide resistance. In order to carry out this research we rely on different techniques for genetic profiling (microarrays, RNAseq, real-time PCR, etc.), as well as on gene silencing approaches such as RNA interference (RNAi technology, dsRNA).
Christopher Potter
Assistant Professor
Department of Neuroscience
Johns Hopkins University School of Medicine
Baltimore MD USA
cpotter@jhmi.edu
Potter Lab
We are interested in the neural mechanisms underlying insect olfaction. We have initially focused on Drosophila melanogaster, and will extend our research into Anopheles gambiae.
Steve Stowers
Assistant professor
Cell Biology and Neuroscience
Montana State University
Bozeman Montana United States
sstowers@montana.edu

How sensory information is processed by the nervous system to produce behavioral outputs is a long-standing problem in neuroscience, but one far from being understood. My lab exploits the many advantages of the Drosophila model system to study the relationship between somatosensory input and behavior. Our overall strategy is to first map neural circuits associated with specific somatosensory neurons and then manipulate and measure neuronal activity within the circuit to elucidate the fundamental principles of neuronal circuit logic. Since the depth with which a neural circuit will be understood will correlate with the precision with which it can be manipulated, we
Subhash Lakhotia
Professor
Cytogenetics Laboratory, Department of Zoology
Banaras Hindu University
Varanasi UP India
lakhotia@bhu.ac.in

Major current research interests using Drosophila as the model organism: cell stress related gene expression in development, long non-coding RNAs, stress proteins in tumour development, neurodegenerative disorders, Ayurvedic Biology
Simon Bullock
Dr
Cell Biology
MRC Laboratory of Molecular Biology
Cambridge Cambridgeshire UK
sbullock@mrc-lmb.cam.ac.uk
Mechanisms of cytoplasmic mRNA transport
Our group is interested in how mRNAs and other cargoes are sorted within the cytoplasm by microtubule-based motors. We exploit the genetics of Drosophila melanogaster for part of our work, and have optimised CRISPR/Cas tools for this organism (www.crisprflydesign.org).
Michal Zurovec
Dr.
Institute of Entomology
Biology Centre CAS
Ceske Budejovice Czechia Czech Republic
zurovec@entu.cas.cz
Molecular Genetics
Gene mutagenesis by engineered nucleases, Adenosine signaling pathway. We are developing approaches to the investigation of extrinsic controls on tissue growth by using the imaginal discs of Drosophila as a model system.
Ramasamy Asokan
Principal Scientist (Agricultural Entomology)
CV
Biotechnology
Indian Institute of Horticultural Research (IIHR)
Bangalore  Karnataka INDIA
asokaniihr@gmail.com
Insect Molecular Biology
RNAi in the management of 1. Sap sucking insects viz. Thrips, whiteflies, aphids, leaf hoppers, mirids 2. Lepidoptera (Helicoverpa armigera, Spodoptera litura, Plutella xylostella) 3. Discovery and utilization of small RNAs especially microRNAs from insect pests
Mauro Mandrioli
PhD
Life Sciences
University of Modena and Reggio Emilia
Modena Italy Italy
mauro.mandrioli@unimo.it
Insect genetics and Biosciences Lab
Insect cytogenetics and microbiome analysis
Rob Good
Genetics
University of Melbourne
Parkville Victoria Australia
rtgood@unimelb.edu.au
Robin
Genomics of Drosophila, Aphids,Molluscs RNAi studies of Aphids and molluscs Developing software tools.
Nancy Moran
Professor
Integrative Biology
University of Texas at Austin
Austin TX USA
nancy.moran@austin.utexas.edu
Nancy Moran
I study biology and evolution of insects especially symbiotic relationships. Main groups of interest are aphids, leafhoppers, and bees.
Darren Obbard
Dr
Institute of Evolutionary Biology
University of Edinburgh
Edinburgh Midlothian UK
darren.obbard@ed.ac.uk

Evolutionary Genetics Genome Evolution Drosophila Insect viruses Antiviral RNAi
Ludvik Gomulski
Department of Biology and Biotechnology
University of Pavia
Pavia PV Italy
gomulski@unipv.it
Genetics and genomics of insects of economic and medical importance
We are using transcriptome data to analyze the molecular changes that accompany major physiological and behavioral changes such as maturation and mating in different insect species of medical and agricultural importance. We are particularly interested in transcriptional changes in olfactory related genes.
Dimitrios Kontogiannatos
Dr.
CV
Biotechnology Department
Agricultural University of Athens
Athens Attika Greece
dim_kontogiannatos@yahoo.gr

I am studying the use of RNAi technology in several aspects of Insect Science, like functional genomics, endocrinology and pest management (Baculovirus, bacterial-mediated dsRNA delivery and direct transfer of dsRNAs) in the Lepidopteran species Sesamia nonagrioides.  I am also working with insect cell lines and baculovirus technology in order to express and biochemically characterize important developmental genes of several insect pests. 
Maarten Jongsma
Dr
Business Unit Bioscience
Plant Research International, Wageningen University and Research Center
Wageningen Gelderland The Netherlands
maarten.jongsma@wur.nl
High throughput phenotyping plant resistance to insects
I am involved both in studies of insect behaviour on plants using videotracking technology and highly parallel arena plates as well as in GPCR olfactory and taste receptor studies based on a new microfluidic platform
Salva Herrero
Associate Professor
Department of Genetics
Universitat de Valencia
Burjassot Valencia España
sherrero@uv.es
GenBqBt Insect-Pathogen Interaction
Studies in our group aim to determine and characterize the components involved in the interaction of Lepidoptera larvae with their pathogens as well as determine novel proteins and mechanisms that could also contribute to reduce the detrimental effects of the pathogens. We are mainly focused on the study of the response of the Lepidoptera Spodoptera exigua (beet armyworm) to two entomopathogens such as Bacillus thuringiensis and baculovirus. In this context, our main objectives are: • Development of genetic tools for the study of pathogen interaction with S. exigua. • Characterization of tritrophic interactions in the mode of action of B. thuringiensis
Renata Da Rosa
PhD
CV
Department of General Biology
State University of Londrina - Brazil
Londrina Paraná Brazil
renata-darosa@uel.br
Laboratory of Animal Cytogenetics
Molecular entomology; Functional Genomics in insects; Molecular cytogenetics and cytogenomics.
Omogo Collins
Mr.
CV
Biochemistry and Molecular Biology
International Centre For Insect Physiology and Ecology
Nairobi Kenya Kenya
graomogo@yahoo.com
Icipe-Molecular Biology and Bioinformatics Unit
My career goal is to be an investigator in tropical medicine, focusing in research on the control of neglected tropical diseases (NTDs), and emerging and re-emerging infectious diseases (EIDs), with focus on the identification and validation of novel drug targets for chemotherapeutic control.
Frank Criscione
Entomology
University of Maryland
Rockville MD USA
fcris@umd.edu

Enhancer trap technologies and mosquito hematology.
Brenda Oppert
Research Molecular Biologist
CV
Stored Products Insects Research Unit
USDA Agricultural Research Service, Center for Grain and Animal Health Research
Manhattan KS USA
bso@ksu.edu
BeetleLab
Although my background is protein chemistry, in 2007 our lab research focus shifted to high throughput sequencing to address functional genomics related to stored product insects. We now use sequencing in the evaluation of differential gene expression in insects fed microbial toxins or protease inhibitors, among others. We also were involved in the annotation of the Tribolium genome, particularly protease genes, and now are working with collaborators to sequence the genome of the lesser grain borer, Rhyzopertha dominica. To evaluate data from these sequencing projects, we have developed data management infrastructure and analysis algorithms for in-house bioinformatics.
Leonard Rabinow
professor
Biology
Univ. Paris Sud
Orsay none France
leonard.rabinow@u-psud.fr

Regulation of sex determination, apoptosis, and signal transduction via phosphorylation by LAMMER protein kinases
Sara Oppenheim
NSF Postdoctoral Fellow
Sackler Institute for Comparative Genomics
American Museum of Natural History
NY NY USA
saraoppenheim@gmail.com

The evolution of host plant use and diet breadth in specialists and generalists.
Emilie Pondeville
Dr
Institute of Infection, Immunity and Inflammation
University of Glasgow Centre for Virus Research
Glasgow Glasgow Scotland, UK
emilie.pondeville@glasgow.ac.uk

Reproduction and immunity in mosquito vectors using genetic tools
Aline Edith Noutcha
Dr- Senior Lecturer
CV
Entomology & Pest Management Unit, Department of Animal & Environmental Biology
University of Port Harcourt, Nigeria
Port Harcourt Rivers State Nigeria
naemekeu@yahoo.com
Entomology & Pest Management Research Lab
Understanding Vector-Borne Infectious Diseases eg: Malaria, Filariases (Epidemiology, Immunology, Parasitology, Genomics, Entomology, Cytogenetics, Cell Biology) Prevention & Control of Vector Borne Infectious Diseases (Community Education on Basic Control Practices and Healthy Life Styles, Good Environmental Practices; Inventory of Cultural Control Methods among various communities; Determination of factors affecting compliance of imported/prescribed control approaches). Monitoring Resistance phenomena in Insect & Parasites.
Vett Lloyd
Professor
Biology
Mt. Allison University
Sackville New Brunswick Canada
vlloyd@mta.ca
Lloyd Lab - Mt. Allison
Drosophila: Epigenetics, transgenerational effects, Wolbachia Ticks: Genome structure, population structure, Borrelia, bartonella
Ioannis Eleftherianos
Assistant Professor
Biological Sciences
The George Washington University
Washington DC USA
ioannise@gwu.edu
Insect Infection and Immunity
Our lab uses a tripartite system consisting of three model organisms: an insect, Drosophila; the entomopathogenic (or insect pathogenic) nematode Heterorhabditis; and its symbiotic bacterium Photorhabdus, to investigate the molecular and evolutionary basis of insect immunity, bacterial symbiosis/pathogenicity and nematode parasitism, and to understand the basic principles of the complex interactions between these important biological processes. This system promises to reveal not only how pathogens evolve virulence but also how two pathogens can come together to exploit a common host.
Nazzy Pakpour
Assistant Project Scientist
Medical Microbiology and Immunology
University of California Davis
Davis CALIFORNIA USA
npakpour@ucdavis.edu
Nazzy Pakpour
To elucidate the bidirectional effects of malaria on type 2 diabetes and of type 2 diabetes on malaria. By 2030, one in five adults on the African continent will have type 2 diabetes, resulting in epidemic co-morbidity of these diseases. Therefore, a better understanding of the intersection of malaria infection and type 2 diabetes will be critical for the development of future clinical interventions to reduce the burden of type 2 diabetes complications as well as malaria transmission.
Julie Reynolds
Postdoctoral Researcher
Evolution, Ecology, and Organismal Biology
Ohio State University
Columbus OH USA
reynolds.473@osu.edu
Postdoctoral Researcher
Molecular, Biochemical, and Physiological aspects of diapause.
Michael Kanost
Distinguished Professor
Biochemistry and Molecular Biophysics
Kansas State University
Manhattan KS USA
kanost@ksu.edu
Kanost lab
My laboratory is investigating proteins present in the hemolymph (blood) of insects, with special interest in the proteins' functions in the insect immune system. We are studying plasma proteins, including prophenoloxidase, serine proteases, protease inhibitors from the serpin superfamily, and proteins that bind to microbial polysaccharides. The long range goal is to understand the biochemical and cellular processes by which insect immune systems recognize and respond to pathogens and parasites. We also investigate the biochemistry of cuticle proteins and their roles in determining mechanical properties of insect exoskeletons. A third current research area is the biochemistry of multicopper oxidases in
Paul Eggleston
Prof.
Life Sciences
Keele University
Keele Staffs. UK
p.eggleston@keele.ac.uk
Molecular Entomology
My research interests are in molecular entomology, particularly the molecular genetics of mosquitoes that transmit human disease and their complex interactions with the parasites and viruses that cause disease. Because of their medical importance, the focus of my group is on the malaria vector mosquito, Anopheles gambiae and the yellow fever mosquito, Aedes aegypti. Current projects include the development of technologies for genetic engineering of mosquitoes, the creation of genetically modified mosquitoes that are compromised in their ability to transmit disease and the development of strategies for stage- and tissue-specific gene expression within genetically modified mosquitoes. My research has attracted
Cassandra Extavour
Associate Professor
Organismic and Evolutionary Biology
Harvard University
Cambridge MA United States
extavour@oeb.harvard.edu
Extavour Lab
My lab is interested in the evolution of early embryonic development. We focus primarily on the evolution and development of reproductive systems, including both the germ line and the somatic components of the gonad. We use molecular genetic developmental analysis, histological analysis, and experimental embryology to study early animal embryogenesis, germ cell specification, and gonad development in several different invertebrate model systems. Our main goal is to understand the evolution of the genetic mechanisms that enabled the evolution of multicellularity, and how these mechanisms employed during early embryogenesis in extant organisms to specify cell fate, development and differentiation.
Daniel Sonenshine
Professor (Emeritus)
Biological Sciences
Old Dominion University
Norfolk Virginia United States
dsonensh@odu.edu
Tick Lab
Neurobiology of ticks; transcriptomics; neuropeptides, neurotransmitters; tick-borne pathogens; innate immunity; pheromones.
Gregory Lanzaro
Professor
Vector Genetics Laboratory, Dept. Pathology, Microbiology & Immunology
University of California-Davis
Davis California United States
gclanzaro@ucdavis.edu
Vector Genetics Lab
My research background is in insect population genetics with a focus on insect vectors of human disease. Recently I have been moving from classical population genetics to population genomics and bioinformatics. Our current emphasis has largely shifted from using genetic markers, such as microsatellite DNA and SNPs, to next generation sequencing, allowing us to analyze the genetics of populations by studying diversity at the individual mosquito whole genome level. Our work can be considered on two levels: (i) as contributing to an improved understanding of disease transmission and control and (ii) basic evolutionary genetics addressing issues involving the evolution of
Adam Dolezal
Postdoctoral Researcher
Ecology, Evolution, and Organismal Biology
Iowa State University
Ames IA USA
adolezal@gmail.com

I am interested in the interaction of various stressors, particularly nutrition and pathogens, on honey bee health, as well as how these factors affect other pollinator species.
Kasim George
Post doctoral fellow
Molecular and Cellular Biology, University of Maryland College Park
Institute for Bioscience & Biotechnology Research
Rockville Maryland USA
kigeorge@umd.edu
O'Brochta Group IBBR
My research interest focuses on host-pathogen interaction. Specifically, I am investigating the interaction of the human malaria pathogen, Plasmodium falciparum and the arthropod vector Anopheles stephensi. Using transgenic technology, I aim to modify to innate immune system of A. stephensi, to increase the intensity of P. falciparum infection for live attenuated sporozoites vaccine development.
Fiona Mumoki
PhD Student
Zoology and Entomology Department, Social Insect Research Group
University of Pretoria
Hatfield, Pretoria Gauteng South Africa
nelimafiona@yahoo.com

I am interested in chemical communication in honeybee reproductive dominance
Marian Goldsmith
Professor
Biological Sciences
University of Rhode Island
Kingston RI USA
mki101@uri.edu
Professor
Molecular linkage mapping, cytogenetics, and genomics of the domesticated silkworm, Bombyx mori and applications to other lepidopteran species.
Gene Robinson
Swanlund Chair of Entomology
Department of Entomology and Institute for Genomic Biology
University of Illinois at Urbana-Champaign
Urbana IL USA
generobi@illinois.edu
Robinson Lab
Robinson uses genomics and systems biology to study the mechanisms and evolution of social life. His principal model system is the Western honey bee, Apis mellifera, along with other species of bees. The goal is to explain the function and evolution of behavioral mechanisms that integrate the activity of individuals in a society, neural and neuroendocrine mechanisms that regulate behavior within the brain of the individual, and the genes that influence social behavior. Research focuses on division of labor, aggression, and the famous dance language, a system of symbolic communication. Current projects include: 1) nutritional regulation of brain gene expression
Cathy Coutu
Molecular Biology Technician
Research Branch
Agriculture and Agri-Food Canada
Saskatoon SK Canada
cathy.coutu@agr.gc.ca
Hegedus Lab
•Insect genomics and proteomics platforms leading to the identification of novel targets and strategies for insect resistance. The focus is on insect digestive biochemistry.
Antonia Monteiro
Associate Professor
CV
Biological Sciences
National University of Singapore
Singapore Singapore Singapore
antonia.monteiro@nus.edu.sg
Monteiro Lab
We seek to understand the evolution of morphological novelties by focusing on the evolution and development of butterfly wing patterns. Research in the lab addresses both the ultimate selective factors that favor particular wing patterns, as well as the proximate mechanisms that generate those patterns. We combine tools from ethology, population genetics, phylogenetics, and developmental biology to understand the nature of the variation underlying developmental mechanisms within or between species, and why species display their particular color patterns. Our model organisms (so far) have been African satyrid butterflies in the genus Bicyclus, other nymphalids, pierid butterflies, and saturniid moths.
Alexandra Wilson
Associate Professor
Department of Biology
University of Miami
Coral Gables FL USA
acwilson@bio.miami.edu
Wilson Group
The Wilson Group's research focuses on the symbiosis of sap-feeding insects with their obligate intracellular bacterial symbionts. Working within an evolutionary framework they use protein expression systems and immunolocalization to functionally characterize amino acid transporters at the symbiotic interface of sap-feeding insects.
Brian Lovett
Graduate Student
Entomology Department
University of Maryland
College Park MD United States
lovettbr@umd.edu
St. Leger Lab
Brian Lovett is a PhD student studying mycology and genetics in agricultural and vector biology systems. He is currently working on projects analyzing mycorrhizal interactions in agricultural systems and the transcriptomics of malaria vector mosquitoes.
Urs Schmidt-Ott
Associate Professor
Organismal Biology and Anatomy
University of Chicago
Chicago Illinois USA
uschmid@uchicago.edu

Molecular evolution of developmental mechanisms. I have a long-standing interest in comparative developmental genetics of animals, especially the molecular evolution of developmental mechanisms. Research in my laboratory examines the reorganization of embryonic development during the radiation of the insect order Diptera (flies, mosquitoes, midges etc.) and involves developmental, genetic, genomic and biochemical approaches in a variety of dipteran models that we and others have been developing for many years (e.g. Megaselia, Clogmia, Episyrphus, Chironomus, Coboldia).
Nicole Gerardo
Assistant Professor
Biology
Emory University
Atlanta GA - Georgia United States
nicole.gerardo@emory.edu
The Gerardo Lab
Our lab's focus is on the evolutionary ecology of interactions between microbes and hosts. We are interested in how both beneficial and harmful microbes establish and maintain relationships with their hosts. Such associations are shaped by ecological limitations on host range, evolutionary trade-offs for both hosts and microbes, and host immunology. We combine genomics, phylogenetics and experimental approaches to study these forces in diverse insect-microbe systems.
Darko Cotoras
PhD Candidate
CV
Integrative Biology
University of California, Berkeley
Berkeley California USA
darkocotoras@berkeley.edu
Evolution of terrestrial invertebrates on islands
I am interested on historical processes that create biodiversity, particularly in conditions of isolation. I am studying the temporal dynamic of the adaptive radiation of the Tetragnatha spiders in the Hawaiian archipelago. For that, I am using population genetics and phylogenetics approaches (Exon Capture -NGS- and Sanger sequencing) using fresh and museum samples. As a complement, I am also studying the color polymorphism of several species and their habitat (plant) preferences. In parallel, I am doing phylogenetic studies on endemic spiders from the Juan Fernández archipelago and characterizing the spider community of Rapa
Margareth Capurro
Associate Professor
Dept Parasitology
Universidade de Sao Paulo
Sao Paulo SP Brazil
mcapurro@icb.usp.br
Genetically Modify Mosquitoes
Produce transgenic mosquitoes that can block dengue transmission. Also I am the Coordinator for PAT - Aedes transgenic Project that is the evaluation of OX513A Aedes aegypti strain in field releases studies in Brazil.
Jennifer Gleason
Associate Professor
Ecology and Evolutionary Biology
University of Kansas
Lawrence KS USA
jgleason@ku.edu

My lab focuses on the genetics of behavior, primarily in Drosophila. We are interested in the genetic changes resulting in behavioral isolation between species. To that end, we study courtship behaviors, primarily acoustic signals (courtship song) and pheromones.
Gloria I. Giraldo-Calderón
VectorBase Scientific Liaison/Outreach Manager
Department of Biological Sciences
University of Notre Dame
Notre Dame IN USA
ggiraldo@nd.edu
VectorBase
I teach scientist at all career stages, students, postdocs, technicians, researchers, and faculty, how to use VectorBase data, tools and resources. I also teach how to manually annotate genes to submit them in VectorBase, we currently use Artemis but will soon host WebApollo too. Our developers are currently working on VectorBase Galaxy, soon will be teaching how to use it too.
Dominic Esposito
Director
Protein Expression Laboratory
Frederick National Lab for Cancer Research
Frederick MD USA
dom.esposito@fnlcr.nih.gov
Protein Expression Laboratory
Generation of recombinant DNA and proteins in support of the National Cancer Institute's RAS initiative.
Michel Slotman
Assistant Professor
Entomology
Texas A&M University
College Station TX United States
maslotman@tamu.edu

My work focuses on understanding adaptation and speciation in disease transmitting mosquitoes. My lab studies the olfactory systems of An. gambiae and Ae. aegypti to identify the genetic factors responsible for the adaptation of these species to human hosts. We are also interested in the impact of vector control on mosquito populations; specifically how IRS and LLINs reduce mosquito effective population size and cause shifts in behavior. Finally, we are interested in the speciation process responsible for the genetic diversity within the An. gambiae complex: we aim to understanding the genetic basis of hybrid sterility and are using population
Amy Toth
Assistant Professor
Ecology, Evolution, and Organismal Biology
Iowa State University
Ames Iowa United States
amytoth@iastate.edu
Assistant Professor
We use an integrative approach, blending behavior, ecology, physiology, and genomics, to discover new insights into the mechanisms and evolution of social behavior. We are also investigating the roles of nutrition, viruses, and landscapes on pollinator health and conservation. Our main study systems are honey bees (Apis mellifera) and paper wasps (genus Polistes).
J. Spencer Johnston
Professor
Entomology/Genetics
Texas A&M University
College Station Texas United States
spencerj@tamu.edu
We estimate do Genome Size Estimates for genomics projects
My primary interest is in genome size evolution and genome architecture. The Alab specializes in Arthropod genome size estimates, but routinely determinse genome size for a wide variety of organisms. We take pride in estimates that are timely, accurate and precise, and follow these estimates through to final publication of completed genomes, phylogenomic and genomic surveys. We also study population structure, working primarily on honey bees. These studies include microsatellite loci, SNPs, genomic and quantitative cytogenetics.
Kushal Suryamohan
CV
Biochemistry
University at Buffalo
Buffalo New York USA
kushalsuryamohan@gmail.com

As a Computer Science graduate and a PhD candidate in Biochemistry, I am interested in both computational biology and wet-lab genetics/molecular biology. In collaboration with the Sinha lab in the Department of Computer Science at the University of Illinois at Urbana Champaign (http://www.sinhalab.net/sinha-s-home), we have developed a computational pipeline to predict cis-regulatory modules (CRMs) genome-wide in evolutionarily diverged dipteran species such as the honey bee, malaria mosquito, wasp, and the flour beetle, by using enhancers identified experimentally in Drosophila melanogaster. Currently, I am interested in the gene regulatory circuitry for central nervous system specification in the fruit
Joe O’Tousa
Professor
Biological Sciences
University of Notre Dame
Notre Dame IN USA
jotousa@nd.edu
O'Tousa Lab
My research focuses on the study of invertebrate visual systems. The Drosophila system has provided excellent molecular and genetic tools for this analysis. More recently we extended our studies to mosquito visual systems, specifically looking at mosquito retinal structure and the photoreceptor adaptations enabling vision and mosquito behaviors in low light environments.
Dr. Emmanuelle Jacquin-Joly
CV
EcoSens department iEES-Paris
INRA
Versailles cedex Yveline France
emmanuelle.jacquin@versailles.inra.fr
Institute of Ecology and Environmental Sciences
My research focuses on insect chemoreception in a context of plant protection. My objectives are 1) to decipher the molecular mechanisms of olfaction and taste, focusing on chemosensory receptors, 2) to study the contribution of chemoreception to insect adaptation to new hosts and anthropic systems, 3) to investigate the evolutionary origin of insect chemosensory receptors. I am using an integrative approach from genes to behaviour, including genomics and transcriptomics approaches.
Steve Paterson
Professor
CV
Centre for Genomic Research
University of Liverpool
Liverpool Merseyside UK
s.paterson@liv.ac.uk
Centre for Genomic Research
Genomics and population genetics, particularly of host-parasite interactions. Bioinformatics, including RNAseq, de novo assembly and annotation. Sequenced Plodia interpunctella genome.
Frederique Hilliou
Santé des Plantes et Environnement
INRA
Sophia Antipolis cedex alpes maritimes FRANCE
hilliou@sophia.inra.fr
Institut Sopha Agrobiotech
The team I am working with at INRA of Sophia Antipolis, France, is involved in studying the mechanistic bases and evolution of insect traits essential to adapt to the biotic and abiotic environment. My main project has been developed to decipher the way Lepidoptera adapt to chemically adverse environments (using genomic approaches, and through the prism of the CYP genes and P450 enzymes they encode). We have focused on adaptation of the polyphagous noctuid pest S. frugiperda. We have developed an oligonucleotide microarray covering almost 10,000 genes from this species and contributed to the sequence of ESTs. Transcriptomic results show
Shin Goto
Associate Professor
Graduate School of Science
Osaka City University
Osaka Osaka Japan
shingoto@sci.osaka-cu.ac.jp

Molecular mechanisms of Insect environmental adaptation.
Peter Atkinson
Professor
Entomology/Institute for Integrative Genome Biology
University of California Riverside
Riverside CA USA
peter.atkinson@ucr.edu
Atkinson Lab
I am interested in how transposable elements work both in vitro and in their host organisms. I am interested in how transposable elements can be harnessed as gene vectors in insects and also how they can be utilized in genetic control strategies.
Stephanie Mohr
Director of the DRSC
Genetics
Harvard Medical School
Boston MA USA
stephanie_mohr@hms.harvard.edu
Drosophila RNAi Screening Center & Genome Engineering Production Group
At the Drosophila RNAi Screening Center (DRSC) and more recently founded Genome Engineering Production Group (GEPG), we focus on the use of and new developments in RNA interference (RNAi), the CRISPR/Cas system, and other functional genomics approaches, including genome engineering. We are a community-focused group dedicated to transferring technologies, know-how and research materials to others for their research. We also have a growing suite of software tools and databases. Our resources are developed primarily for use with Drosophila melanogaster but many of the same approaches, underlying software, research materials, etc. can be used for non-model insects.
Marc Halfon
Associate Professor
Biochemistry
University at Buffalo-SUNY
Buffalo NY USA
mshalfon@buffalo.edu

My laboratory maintains an active research program divided between Drosophila molecular genetics and computational/bioinformatics. Current research in the laboratory falls into three main areas: (a) discovery and characterization of transcriptional cis-regulatory modules (CRMs) in Drosophila and other holometabolous insects, (b) promoter-CRM interactions, and (c) mechanisms of specificity for receptor tyrosine kinase (RTK) signaling, with a focus on mesoderm development. I am also the developer and curator of the REDfly database of Drosophila transcriptional regulatory elements and as such am active in the field of genome annotation and in providing community-accessible database resources.
Jeffrey Scott
Professor
Entomology
Cornell University
Ithaca NY USA
jgs5@cornell.edu

Evolution and Population Genetics of Insecticide Resistance, Insecticide Toxicology, P450 Monooxygenases of Insects, Insect Molecular Biology, Evolution of Sex Determination in Musca domestica, RNAi applications for pest control
Dr. Marcé Lorenzen
Assistant Professor
faculty
Department of Entomology
North Carolina State University
Raleigh NC United States
marce_lorenzen@ncsu.edu
Marce Lorenzen Lab
To elucidate the molecular mechanism that underlies a class of novel selfish-genetic element found only in Tribolium. Due to the selfish behavior of these elements they have potential as gene "drivers" to push pesticide susceptibility into populations of insect pests of crops, or vector incompetence into populations of insect vectors of disease.
Dr. Christina Grozinger
Professor of Entomology
faculty
Department of Entomology
Pennsylvania State University
College of Agricultural Sciences
University Park PA United States
cmgrozinger@psu.edu
Grozinger Lab
My program seamlessly integrates research, education, outreach and service related to the biology and health of honey bees and other pollinators.  My research addresses both basic and applied questions, using a highly trans-disciplinary approach encompassing genomics, physiology, neurobiology, behavior, and chemical ecology.  My program consists of two main areas of study, which examine the mechanisms underlying social behavior and health in honey bees and related species.  Our studies on social behavior seek to elucidate the proximate and ultimate mechanisms that regulate complex chemical communication systems in insect societies.  Our studies on honey bee health examine how biotic and abiotic stressors
Dr. Susan Brown
Distinguished Professor
faculty
Division of Biology
Kansas State University
Manhattan KS United States
sjbrown@ksu.edu
Brown Lab
The Brown lab is using the Irys high-throughput genome mapping platform from BioNano Genomics to improve the Tribolium castaneum genome.
Dr. Jennifer Brisson
Assistant Professor
faculty
Department of Biology
University of Rochester
Rochester NY United States
jbrisso3@bio.rochester.edu
Brisson Lab
genetic mapping and association mapping using Illumina data, as well as Illumina (RNA-Seq) studies; in situ hybridization of RNA to embryos, methyl-Seq
Dr. Angela Douglas
Professor
faculty
Department of Entomology
Department of Molecular Biology and Genetics
Cornell University
Ithaca NY USA
aes326@cornell.edu
Douglas Lab
All animals are multi-organismal: they are chronically infected by beneficial microorganisms. We study the interaction between animal function and the diversity and activities of resident microorganisms.
Dr. Serap Aksoy
Professor
researcher
School of Public Health
Yale
New Haven Connecticut USA
serap.aksoy@yale.edu
Aksoy Lab
Our lab studies multiple aspects of tsetse flies, the vectors of African trypanosomes. Trypanosomes are the causative agents of the devastating Sleeping Sickness disease in Sub-Saharan Africa. The lab’s work spans a range of projects including tsetse immunity, reproduction and symbiosis, tsetse-symbiont and trypanosome interactions, tsetse genomics and population genetics, and trypanosome developmental processes in tsetse. The ultimate goal of our work is to improve current control methods and/or develop novel strategies to reduce or eliminate the transmission of Sleeping Sickness in Sub-Saharan Africa.
David O’Brochta
Professor
faculty
Department of Entomology; Institute of Bioscience and Biotechnology Research
University of Maryland
dobrocht@umd.edu
Rockville MD United States
dobrocht@umd.edu
O'Brochta Lab
Our research focuses on insect molecular genetics with particular interest in the study of insects that transmit human diseases although our interests are very broad. Our interests in genetics center around the study of transposable elements.  Those interests range from questions concerning their basic biology and aspects of their movement to more applied question concerning their development and use as genome manipulation tools.  Our insect interests are centered mainly on mosquitoes and the physiological genetics of Plasmodium infection. 
Dr. Max Scott
Professor of Entomology
faculty
Department of Entomology
North Carolina State University
Raleigh NC USA
max_scott@ncsu.edu
Scott Lab
Our main interest is in developing transgenic “male-only” strains of insect pests for genetic control programs. For example, we have developed strains of flies that are pests of livestock (e.g. New World screwworm), which carry genetic systems that cause female lethality unless tetracycline is added to the diet. We are also interested in developing genetic systems for replacing mosquito populations with strains that have a reduced capacity to transmit diseases such as dengue fever. Our applied work is underpinned by fundamental research on the regulation of gene expression in the model insect Drosophila melanogaster. For example, we have investigated how