Participants

Participation in the Insect Genetic Technologies Research Coordination Network is open to students (undergraduate and graduate), postdoctoral researchers, technical and scientific staff and independent investigators with an interest in insect science, genomics and genetic technologies. Knowledge of and/or expertise with insect genetic technologies is not required to participate in this network. In fact, those without specific knowledge of insect genetic technologies are especially encouraged to participate so that a broader understanding and application of these technologies can be developed.

As a participant you will be able to fully interact and access the resources on this site. You will be able to find experts interested in technologies or insect systems you are interested in, find consultants or collaborators and submit content to this site in the form of ‘posts’ to Technology Topics, Knowledgebase, Network Announcements and Activities.


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Participant Contact Research Focus
David Kang
Postdoctoral Fellow
Biological Sciences
University of Notre Dame
Notre Dame IN United States
dkang3@nd.edu
Severson Laboratory
I investigate the impact of stressors on Aedes aegypti mosquito susceptibility to arboviruses. Ultimately, my overarching goal is to capitalize on genetic variation to reduce the transmission of neglected tropical diseases.
Joanna Kotwica-Rolinska
PhD
Department of Molecular Biology and Genetics
Institute of Entomology, Biology Centre , Czech Academy of Sciences
Ceske Budejovice  ‎South Bohemia Czech Republic
askako@entu.cas.cz
Laboratory of Molecular Chronobiology
We are interested in isnsect seasonality which includes hormonal regulation of adult diapause, architecture of the photoperiodic timer (at molecular, genetic and cellular levels), and it's connection to the circadian clock.
Lucille Kohlenberg
BME
UW Madison
Madison WI USA
lkohlenberg@wisc.edu

Genome Engineering
Changmin Ko
Developmental and Molecular Biology
Albert Einstein College of Medicine
Bronx New York USA
changmin.ko@einstein.yu.edu

Role of Wnk in wg pathway and Na+/K+ co-transporter activity
SALMAN KHAN
PhD RESEARCH SCHOLAR
FOREST ENTOMOLOGY DIVISION
FOREST RESEARCH INSTITUTE DEHRADUN
DEHRADUN UTTARAKHAND INDIA
salman1315@gmail.com

BIOLOGICAL CONTROL OF FOREST INSECT PESTS; TAXONOMY OF MICRO-HYMENOPTERA; MORPHOMETRICS OF INSECTS; IDENTIFICATION OF NATURAL ENEMY OF FOREST TREES
Bianca Kojin
Post-doctoral Research Associate
Department of Entomology
Texas A&M University
College Station Texas USA
bianca.burini@gmail.com

Genetic transmission of engineered transgenes.
Michael O. Kusimo
Dr.
CV
Independent researcher
IITA, Benin Station
Ifako-Ogba Lagos Nigeria
gkusimo@gmail.com

1. Molecular detoxification mechanisms in insect vectors and development of new reagents to overcome insecticide resistance 2. Assessment of new model organisms 3. Mapping of the distribution of mosquito-borne pathogens 4. Chromosomal gene screening and testing 5. Directed evolution of genes 6. Understanding the molecular mechanism of antimicrobial resistance genes 7. Development of amber temperature stable enzymes
Maria Kupper
Doctor of Science
CV
Chair of Microbiology
University of Wuerzburg
Wuerzburg Bavaria Germany
maria.kupper@freenet.de

My previous work as a doctoral researcher focussed on the involvement of the Camponotus floridanus immune system in the regulation and tolerance of its bacterial endosymbiont Blochmannia floridanus. I investigated the transcriptomic and proteomic responses of the ants upon immune challenge to provide an overview about ant immune factors. I also analysed differences in immune gene expression between endosymbiont bearing tissues and bacteria-free body parts to understand the role of the immune system in symbiont regulation. The results of the expression analysis revealed low expression levels of genes involved in immune signalling, and in addition the high expression of negative
Jared Koler
Biotechnology
University of Nevada Reno
Reno nv United States
jkoler@nevada.unr.edu
Gulia-Nuss
Lymphatic filariasis (LF), commonly known as elephantiasis, is a neglected tropical disease caused by parasitic filarial worms which are spread by infected mosquitoes taking blood meals required for egg maturation. More than 120 million people in ~70 countries are infected with LF. The Centers for Disease Control and Prevention (CDC) considers LF a priority in the ‘CDC winnable battles’ to eliminate LF from the Americas. Although drug therapy and mosquito control programs provide adequate control of LF, there are as yet no promising strategies on the horizon for the rise of drug and insecticide resistance in the worm
Jonas King
Assistant Professor
Biochemistry, Molecular Biology, Entomology, & Plant Pathology
Mississippi State University
Mississippi State MS USA
jonas.king@msstate.edu
kinglab
http://kinglab.bch.msstate.edu/research.html
Karen Kemirembe
Entomology
The Pennsylvania State University
University Park Pennsylvania United States
kuk195@psu.edu
Rasgon Lab
Investigating how Wolbachia pipientis affects mosquito susceptibility to mosquito viruses.
Pinky Kain Sharma
Principal investigator (Wellcome Trust DBT intermediate Fellow)
Department of Genetics and Neurobiology
Regional Centre for Biotechnology, Faridabad, India
Faridabad Haryana India
pinkykain@gmail.com
Laboratory of Genetics and Neurobiology
For any animal, learning about food is an important mechanism that provide animals flexibility in food choices for better survival, hence, it is extremely important to understand how the taste information is represented in the brain.I am interested in understanding how insects make the feeding decisions. This involves identifying neuronal taste circuits in the brain downstream of gustatory sensory neurons that influence feeding behaviors. Physiological state and other factors can act on the gustatory cells and circuits and can modulate taste signals, but these are not well understood in insects. Using Drosophila melanogaster, I will explore into these mechanisms for greater understanding
SUDHARSAN K
student
Biotechnology
Periyar Manimmai Univerity
Thanjavur Tamilnadu India
sudhantt@gmail.com

Genetics
joe kramer
Instructor/director
pathology
rwjms
piscataway  nj usda
kramerjo@rwjms.rutgers.edu

Epitranscriptomics
Il Hwan Kim
Postdoc Fellow
Vector Biology Section, Laboratory of Malaria and Vector Research
National Institute of Allergy and Infectious Diseases
ROCKVILLE  MD United States
il-hwan.kim@nih.gov

Mosquito salivary and hemolymph proteins
Jacob Vinay Vikas Konakondla
Fly Facility
National Centre for Biological Sciences, TIFR
Bangalore Karnataka India
kjvinayvikas@outlook.com
Fly Facility In-charge
Our facility provides services to the Drosophila researchers in the areas of transgenic generation by P-element, PhiC31 mediated, MiMIC methods. Our facility also carries of developmental work towards enabling modern genome editing technologies including CRISPR/Cas9 in Drosophila.
Linda Kothera
Microbiologist
Division of Vector-Borne Diseases
Centers for Disease Control and Prevention
Fort Collins CO US
lkothera@cdc.gov

Genetic changes associated with insecticide resistance in vector mosquitoes.
Phanidhar Kukutla
Postdoctoral research associate
Department of Anesthesia and Critical Care
Mass General Hospital
Charlestown Massachusetts  USA
pkukutla@mgh.harvard.edu

I am interested in pursuing research that addresses questions related to biology/physiology of disease vectors, host-microbe-pathogen interactions, molecular genetics of host-associated bacteria, and engineering microbes for pharmaceutical/biotech applications.
Katrina Klett
Agronomy
Vietnam National University of Agriculture
Hanoi  Hanoi Vietnam
katrina.klett@gmail.com
Tropical Bee and Beekeeping Research Institute
I am interested in honey bee breeding as a means of selecting for genetic resistance to pathogens and producing robust and healthy bees.
Rebijith K B
PDN Cambridge
University of Cambridge
Cambridge  Cambridgeshire  United Kingdom
rebijith@gmail.com

My aim is to continue my work on the cutting-edge researchable areas of Molecular Entomology such as RNAi in insect pest management, Small RNAs: their diversity, roles and practical uses, Potential application of CRISPR/Cas9 to control insect pests etc. Moreover, I will strive to work into the real problems of farmers and develop procedures and novel techniques for solving their problems and improving the efficacy of production
Woo Jae Kim
Assistant Professor
CV
Cellular and Molecular Medicine
University of Ottawa
Ottawa ON Canada
wkim@uottawa.ca
Kim lab
In short, the Kim lab is seeking for the fundamental mechanisms how specific neural circuits lead to certain behaviors. We use tiny insect Drosophila melanogaster to answer this question. Dr. Kim has established two behavioral paradigm called ‘Longer-Mating-Duration’ and ‘Shorter-Mating-Duration’. In short term, the Kim lab will focus on identifying functional neural circuits, genetic components, and sensory modality for these behaviors. In mid term, the Kim lab would expand the behavioral repertoires by establishment of automated quantification system of behavior. Beyond this, the Kim lab will establish automated optogenetic & thermogenetic behavioral manipulation system. With the advantage of strong genetic
Clement Kent
Senior Scientist
Janelia Research Campus
Howard Hughes Medical Institute
Ashburn VA USA
clementfkent@gmail.com
Heberlein Lab
Insect behavior genetics, genomics, and population genomics. Research foci in Drosophila melanogaster and Apis mellifera.
Singo Kikuta
Assistant Professor
Graduate School of Bio-Applications & Systems Engineering (BASE)
Tokyo University of Agriculture and Technology
Koganei Tokyo Japan
singo@cc.tuat.ac.jp

I study the molecular/cellular dynamics involved in insect physiology using fluorescent proteins. My research is to understand transportation of sugars, metabolites or small molecules such as hormone. I develop genetically encoded FRET-based sensors to detect, visualize, and quantify circulating molecules in the hemolymph. And also, I am interested in the gene transfer technologies against non-model organisms to understand specialized characteristics in themselves.
Neha Kulkarni
Bioinformatics
Department of Bioinformatics, Savitribai Phule Pune University (University of Pune)
Pune Maharashtra India
5591.neha@gmail.com

-
Takashi Kiuchi
Assistant Professor
Department of Agricultural and Environmental Biology
Graduate School of Agricultural and Life Sciences, The University of Tokyo
Bunkyo-ku Tokyo Japan
kiuchi@ss.ab.a.u-tokyo.ac.jp
Laboratory of Insect Genetics and Bioscience
Sex determination, Diapause, Host plant preference
Pavan kumar
CV
Molecular Ecology
Boyce Thompson Institute for Plant Research
Ithaca New York United States
pavankumar.sk@gmail.com
Jander lab
1. Improving the potato tuber yield and quality. 2. Decoding the ecological role of plant defensive metabolites. 3. Elucidation of insect detoxification strategies.
Dongho Kim
R&D
agroRNA
Seoul  N/A S. Korea
dkim.gp@gmail.com
CEO
RNAi/insect/plant/dsRNA production/dsRNA formulation/insectcide/herbicide/functional genomics
JohnsonkeW Kinyua
Dr.
Department of Biochemistry
Jomo Kenyatta University of Agriculture and Technology
Nairobi Kiambu Kenya
johnsonkinyua@jkuat.ac.ke

Development of transmission blocking vaccines
Donghun Kim
Graduate Research Assistant
CV
Entomology
Kansas State University
Manhattan KS USA
kp5091@ksu.edu
Arthropod Molecular Physiology Laboratory
I am now pursuing my PhD under the guidance of Dr. Yoonseong Park in the department of Entomology at Kansas State University. My PhD research is to investigate physiological mechanism of tick salivary secretion by using heterologous expression system, pharmacological /physiological technique and NGS analysis.
Maaria Kankare
Academy Fellow
Department of Biological and Environmental Science
University of Jyvaskyla
Jyvaskyla Keski-Suomi Finland
maaria.kankare@jyu.fi
Evolutionary Genetics
My research interests are focused on the adaptation to northern conditions at the genetic and genomic levels. Current work is directed to the role of alternative splicing in candidate genes in life-history traits involved in adaptation to seasonally varying environment.
Panagiota Koskinioti
Biochemistry & Biotechnology
University of Thessaly
Larissa Thessaly Greece
pakoskin@bio.uth.gr

My research focuses on the role of the host preference and the presence of symbionts in the genetic profile of the Mediterranean fruit fly.
Sujai Kumar
Dr
CV
Institute of Evolutionary Biology
University of Edinburgh
Edinburgh Edinburgh United Kingdom
sujaikumar@gmail.com
Blaxter Lab
Building a lepidopteran genome analysis and interrogation environment
yosra khalfallah
PhD student
Biology
university of Tunis el manar
Djerba Medenine Tunisia
yosra_khalfallah0607@yahoo.fr
génomique des insectes ravageurs des cultures à intéret agronomique
microRNAs implicate in plant pathogen interactions
Takahiro Kikawada
Principal Researcher/ Associate Professor
Insect Mimetics Research Unit
National Institute of Agrobiological Sciences (Japan)/ The University of Tokyo
Tsukuba Ibaraki Japan
kikawada@affrc.go.jp
Anhydrobiosis Research Group- Kikawada Lab
We study the molecular mechanisms underlying an extreme desiccation tolerance, anhydrobiosis in the African midge, Polypedilum vanderplanki, which can revive even if they are completely dehydrated. In the process of this study, we identified several key genes involved in anhydrobiosis, such as LEA proteins and trehalose transporters. Now we have started integrative omics projects of the midge to understand comprehensively the mechanisms.
Dimitrios Kontogiannatos
Dr.
CV
Biotechnology Department
Agricultural University of Athens
Athens Attika Greece
dim_kontogiannatos@yahoo.gr

I am studying the use of RNAi technology in several aspects of Insect Science, like functional genomics, endocrinology and pest management (Baculovirus, bacterial-mediated dsRNA delivery and direct transfer of dsRNAs) in the Lepidopteran species Sesamia nonagrioides.  I am also working with insect cell lines and baculovirus technology in order to express and biochemically characterize important developmental genes of several insect pests. 
Jie Hung, Patricia King
Dr.
Faculty of Agriculture and Food Sciences
Universiti Putra Malaysia
Bintulu, Sarawak Not Applicable Malaysia
patriciaking1127@gmail.com
Functional Genomics
Termite digestome: unravelling its enzymes repertoires and secondary metabolites through metatranscriptomes and proteomic analysis; and investigate its gut microbiota using metagenomics approach
Michael Kanost
Distinguished Professor
Biochemistry and Molecular Biophysics
Kansas State University
Manhattan KS USA
kanost@ksu.edu
Kanost lab
My laboratory is investigating proteins present in the hemolymph (blood) of insects, with special interest in the proteins' functions in the insect immune system. We are studying plasma proteins, including prophenoloxidase, serine proteases, protease inhibitors from the serpin superfamily, and proteins that bind to microbial polysaccharides. The long range goal is to understand the biochemical and cellular processes by which insect immune systems recognize and respond to pathogens and parasites. We also investigate the biochemistry of cuticle proteins and their roles in determining mechanical properties of insect exoskeletons. A third current research area is the biochemistry of multicopper oxidases in
Dr. Thomas Kaufman
Distinguished Professor of Biology
faculty
Department of Biology
Indiana University Bloomington
Bloomington IN USA
kaufman@indiana.edu
Kaufman Lab
Using the fruit fly Drosophila melanogaster, the long-term goal of our laboratory is to contribute to an understanding of the genetic basis of the developmental program of higher organisms. The homeotic genes, which play a crucial role in development, have been our principal locus. Our research areas include chromatin, chromosomes, and genome integrity; developmental mechanisms and regulation in eukaryotic systems; and eukaryotic cell biology, cytoskeleton and signaling.