Participants

Participation in the Insect Genetic Technologies Research Coordination Network is open to students (undergraduate and graduate), postdoctoral researchers, technical and scientific staff and independent investigators with an interest in insect science, genomics and genetic technologies. Knowledge of and/or expertise with insect genetic technologies is not required to participate in this network. In fact, those without specific knowledge of insect genetic technologies are especially encouraged to participate so that a broader understanding and application of these technologies can be developed.

As a participant you will be able to fully interact and access the resources on this site. You will be able to find experts interested in technologies or insect systems you are interested in, find consultants or collaborators and submit content to this site in the form of ‘posts’ to Technology Topics, Knowledgebase, Network Announcements and Activities.


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Participant Contact Research Focus
Samuel Arsenault
Mr.
CV
Department of Entomology
University of Georgia
Athens GA United States of America
sva@uga.edu
Brendan G. Hunt: Evolutionary Insect Genetics Lab
My research focusses on understanding the genetic and epigenetic underpinnings of social polymorphism in the fire ant Solenopsis invicta. We seek to understand which genetic and behavioral cues maintain the colony structures of these organisms in their North American range. Additionally, we implement a phylogenetics-based approach for understanding the evolution of epigenetic regulatory mechanisms in Hymenoptera.
Timothy Ajiboye
Mr
Field Genebank
National Centre for Genetic Resources and Biotechnology(NACGRAB), Moor Plantation, Ibadan, Oyo State, Nigeria
Ibadan Oyo state Nigeria
ajiboyefemi2002@yahoo.com
National Centre for Genetic Resources and Biotechnology
Molecular Characterization of Cereal stem borers. Control of cereal stemborers using host plant resistance. Conservation of Insects, Tree crops, and other Field genetic Resources.
Dave Angelini
Assistant Professor
Department of Biology
Colby College
Waterville Maine United States
david.r.angelini@gmail.com

I am particularly interested in developmental genetic systems with alternative phenotypic outcomes, such as serially homologous, dimorphic and polyphenic traits. While my immediate research focuses on the mechanisms of these systems, my lab also uses a comparative approach to explore their evolution. Insect appendages are my most common study systems, where I use a combination of methods from functional genetics, morphometrics, endocrinology and genomics.
Olawale Adeyinka
Molecular Biology, CEMB
University of Punjab, Pakistan
Lahore Punjab Pakistan
adeyinka.olawale@gmail.com
Seed Biotechnology
to develop a biotechnology technique that would be efficient to transform Africa indigenous crop against insect pest
Mary Adewole
Miss
CV
Department of Crop Protection and Environmental Biology
University of Ibadan, Nigeria
Ibadan Oyo Nigeria
modupeadewole75@gmail.com
Entomology Laboratory
MY ACADEMIC RESEARCH FOCUS I am a young graduate female researcher with a Bachelor’s Degree in Agriculture (Crop protection) from the Federal University of Agriculture, Abeokuta (2010). I have concluded a Master of Science Degree (2015) (Entomology) in the Department of Crop Protection and Environmental Biology, University of Ibadan with a Ph.D grade. Quest for more knowledge and desire to be an academia, a researcher and voice to reckon with in in the academic research world (Agriculture) have informed my stride to apply for further study to acquire Ph.D. I have been offered
Helena Araujo
Associate Professor
Institute of Biomedical Sciences/ Institute of Molecular Enthomology
Federal University of Rio de Janeiro
Rio de Janeiro Rio de Janeiro Brazil
haraujo@histo.ufrj.br
Associate Professor
Developmental Biology in Drosophila and Rhodnius prolixus
OLABISI ALAMU
Mr
CV
Plant Gemetic Resources
National Centre for Genetic Resources and Biotechnology (NACGRAB)
iBADAN OYO STATE Nigeria
bisialamu@gmail.com
Seed Testing Laboratory
PhD student with the Department of Crop,Soil and Pest Management,Federal University Technology Akure( FUTA),Nigeria and a Senior Research Scientist with the NACGRAB. The current research seek to develop innovative compounds from botanicals for the control of fruit and vegetative pests of vegetables and fruit crops in Sub Sahara Africa( SSA)
Vakil Ahmad
Dr.
Division of Biological Sciences
University of Missouri
Columbia Missouri USA
v.ahmad@outlook.com
Zhang Bing Laboratory
I am focused on the role of glial cells in Drosophila sleep behavior through Neurogenetics. In order to decipher the role of glial cells in fruit fly behaviors such as locomotion and sleep, and to gain an insight into glia-neural interaction underlying regulatory mechanisms for these behaviors, we use a “cell-centric” forward genetic approach to identify the subset glia through studying sleep behavior in Drosophila melanogaster. We hypothesize that specific glial cells are crucial for various sleep characteristics by modulating the functionality of specific neurons. We genetically manipulate subset glia within a broad glial-specific repo-Gal4 expression pattern using the FINGR (Flippase-induced
Ali Afify
CV
Neuroscience
Johns Hopkins Medical School
Baltimore Maryland USA
ali.afify@jhmi.edu

I am currently investigating the response profile of Anopheles gambiae to pheromones and repellents both at the receptor and glomerulus level.
Camilo Ayra-Pardo
Postdoctoral researcher
Plant Division
CIGB
Havana Havana Cuba
cayrapardo73@gmail.com

My research experience covers the development of applied biotechnological solutions for the control of insect crop pests, as well as, the investigation of molecular aspects of host-pathogen interaction including the molecular mechanisms behind resistance evolution to microbial pesticides.
Alok Arun
Assistant Professor
Institute of Sustainable Biotechnology
Inter American University of Puerto Rico
Barranquitas Puerto Rico USA
aloktransgenic@gmail.com

I am interested in understanding the genetic mechanisms that regulate sex-pheromone biosynthesis in butterflies.
Michelle Anderson
Lab Manager
CV
Fralin Life Science Institute and Department of Entomology
Virginia Polytechnic Institute and State University
Blacksburg VA USA
manderson@vt.edu
Adelman Lab
Research in our laboratory is concerned with understanding the molecular and genetic interactions between arboviruses and their mosquito hosts. Research projects are based in the molecular virology of arboviruses (dengue viruses, Sindbis) as well as the molecular biology and genetic manipulation of the vector mosquito, Aedes aegypti.
Sherry Adrianos
Research Molecular Biologist
Stored Product Insect and Engineering Research Unit (SPIERU)
USDA ARS
Manhattan KS USA
7SherryA@gmail.com
Oppert Lab
We are utilizing CRISPR/Cas technology with a goal to control coleopteran storage pests. Tribolium castaneum genes critical for survival are being targeted. These methodologies will be transferred to other stored product pests.
Anne-Christine Auge
Junior Technician
Cellular and Molecular Medicine (CMM)
University of Ottawa
Ottawa Ontario Canada
aauge@uottawa.ca

I work in a new Drosophila melanogaster lab, studying the neurological and genetic bases of social and sexual behaviour in fruit flies.
Leela Alamalakala
Research Scientist
Biotechnology R&D
Maharashtra Hybrid Seeds Co. Ltd.
Jalna Maharashtra India
leela.alamalakala@gmail.com
Molecular Entomology Lab
Plant-Insect Interactions, Plant defense responses to phloem-feeding insects, Functional genomics
Deanna Arsala
PhD Student
CV
Biological Sciences
University of Illinois at Chicago
Chicago IL United States
darsal2@uic.edu
Lynch Lab
My main research focus is understanding how the maternal-to-zygotic transition (MZT) functions in haplodiploid embryos using Nasonia as a model organism. Using RNA-seq and a functional approach (eRNAi, pRNAi), I aim to uncover regulators of the MZT. I am also researching how sex identity is established in Nasonia during the MZT and how major zygotic gene activation in the early embryo is influenced by gene body methylation using epigenomic profiling and transcriptomic approaches (RNAi-RNA-seq, ATAC-seq, WGBSeq).
Salim Ansari
Evolutionary developmental genetics
Georg August University, Göttingen
Göttingen Lower Saxony  Germany
salim786biotech@gmail.com

I am one of the screener in the iBeetle project which is a genome-wide RNAi screening in red floor beetle, Tribolium castaneum. Our aim is to knockdown each & every gene of Tribolium castaneum by RNAi technique. We have following three main purpose from iBeetle project. 1. To identify the genes from those process which is either not present in Drosophila (stink gland, embryonic leg development etc.) or difficult to study (head involuted). 2. To make the Tribolium as efficient complementary screening platform to identify the function of conserved gene which is not easy
RANIA ABD EL-WAHAB
Assistant Professor
CV
Mites of Cotton and Field Crops
PLANT PROTECTION RESEARCH INSTITUTE
MANSOURA MANSOURA EGYPT
rania-proline@hotmail.com

NANOTECHNOLOGY,LIGHT EMITTING DIODES EFFECTS,PREDATION ON MITES
Michalis Averof
IGFL
CNRS
Lyon Rhone France
michalis.averof@ens-lyon.fr

Comparative developmental biology and regeneration
Muhammad Akmal
Insect genetic diversity and infection with endosymbionts
CV
Entomology
Bahauddin Zakariya University, Multan
Multan Punjab Pakistan
akmal07bzu@gmail.com
lab. of Insect Microbiology and Molecular Biology,
I am working on genetics of Amrasca devastans and its infection with wolbachia.
Adriana Adolfi
PhD student
Vector Biology Department
Liverpool School of Tropical Medicine
Liverpool Merseyside United Kingdom
a.adolfi@liverpool.ac.uk

My research investigates the genetic and molecular basis of P450 monooxygenase-mediated metabolic resistance in the malaria vector A. gambiae. The project aims to functionally characterise the phenotype resulting from the Gal4/UAS-driven overexpression of P450 (cyp6) genes in transgenic mosquitoes.
Margaret Allen
Research Entomologist
Biological Control of Pests Research Unit
US Department of Agriculture, Agricultural Research Service
Stoneville MS USA
megallenathome@gmail.com
Functional Genetics
Functional genetics of a variety of insects that are non-model organisms.
Flor Acevedo
Graduate student
Entomology
The Pennsylvania State University
University Park PA United States
floredith.acevedo@gmail.com

Functional genomics, insect transformation, plant defense response to biotic stresses, chemical ecology,
Adenike Adeyemo
Dr Mrs
Department of Biology, School of Sciences
Federal University of Technology, Akure, Nigeria
Akure,  Ondo State Nigeria
yemonike@yahoo.com
Food Storage Laboratory, Department of Biology
Stored products Entomology, Insect biochemistry with emphasis on mode of action of bio -pesticides in insects
Geoffrey Attardo
Research Scientist
CV
Epidemiology of Microbial Diseases
Yale School of Public Health
New Haven CT United States
geoffrey.attardo@yale.edu
Aksoy Lab
My research focuses upon the reproductive biology of insect vectors of human disease. My Ph.D. thesis in Dr. Alex Raikhels lab focused upon the effects of nutritional components of blood (amino acids) upon the transcriptional regulation of yolk protein genes in the Yellow Fever mosquito (Aedes aegypti). My current work in the Aksoy lab involves the molecular characterization of reproductive processes of the viviparous Tsetse fly (Glossina morsitans morsitans). This work targets multiple aspects of reproduction in tsetse including nutrient metabolism and mobilization to the intrauterine offspring; identification and characterization of reproductive genes and regulatory mechanisms; the role of the
varada abhyankar
MBRl, Department of Zoology
Savitribai Phule Pune University, Pune
Pune Maharashtra India
varada.abhyankar@gmail.com
Molecular Biology Research laboratory
Epigenetic and molecular mechanisms involved in immune response of Drosophila melanogaster.
Hassan M. Ahmed
Developmental Biology
Georg-August-Universität Göttingen
Göttingen Niedersachsen Germany
hmutasi@biologie.uni-goettingen.de
Wimmer Lab
My research focus in the use of developmental and molecular biology techniques to develop eco-friendly transgenic insect control strategies that can be used to fight insect of economical and public health importance (agricultural pest, diseases vectors).
Dr. Md Saheb Ali
Senior Researcher (Senior Scientific Officer)
CV
Agriculture Wing/Faculty
Bangladesh Jute Research Institute
Tokyo University of Agriculture and Technology, Japan and Utsunomiya University, Japan
Utsunomiya & TUAT, TOKYO JAPAN
sahebbjri@yahoo.com
Lab of Insect Molecular Biology/ Lab of Insect Biotechnology
My research interest focused to clarify the regulatory mechanism of cuticular protein gene expression of insect using reverse-transcriptase PCR, real-time PCR, cloning, plasmid construction, histology, site-directed mutagenesis, gene-gun and reporter construct preparation, transient expression analysis, electrophoretic mobility shift assay.
Ramasamy Asokan
Principal Scientist (Agricultural Entomology)
CV
Biotechnology
Indian Institute of Horticultural Research (IIHR)
Bangalore  Karnataka INDIA
asokaniihr@gmail.com
Insect Molecular Biology
RNAi in the management of 1. Sap sucking insects viz. Thrips, whiteflies, aphids, leaf hoppers, mirids 2. Lepidoptera (Helicoverpa armigera, Spodoptera litura, Plutella xylostella) 3. Discovery and utilization of small RNAs especially microRNAs from insect pests
Omar Akbari
Postdoctoral Scholar
Biological Engineering
Caltech
Pasadena CA USA
oakbari@caltech.edu
Bruce Hay Lab
My research focuses on developing innovative population replacement methods for manipulating the composition and/or fate of the wild mosquito vector populations in ways that are catalytic: by introducing relatively small numbers of individuals into natural populations, resulting in effects that increase over time and in space, and that are self-sustaining. These approaches utilize synthetically engineered selfish genetic elements designed to rapidly spread themselves with linked cargo genes into wild populations.
Nesreen Abd El-Ghany
Dr.
Pests and Plant Protection
National Research Center
Cairo Giza Egypt
nesreennrc@gmail.com

My research focus on Insect Microbial Control; specially control of lepidopterous insect pests using Bt and other biological control agents as nematode and fungi. Moreover, I have experience in plant transformation as a new approach for insect control "Bt-Crops". I'm interested in insect molecular biology and transformation system. I'm interested in how transposable elements can be used in genetic control strategies.
Peter Armbruster
Associate Professor
CV
Department of Biology
Georgetown University
Washington DC USA
paa9@georgetown.edu
Armbruster
Research in my lab is focused on understanding processes of phenotypic evolution in natural populations and the molecular bases of adaptation. Our approach to these questions is integrative. We perform a wide range of studies, including field ecology, quantitative and population genetics, and molecular physiology. We are currently studying the invasive and medically important mosquito Aedes albopictus, a vector of both dengue fever and Chikungunya virus. Our research intersects with a variety of topics in both invasive species biology and medical entomology, and we are particularly interested in novel approaches that lie at the interface of these
Karen Barandoc-Alviar
Research Associate
Plant Pathology
Kansas State University
Manhattan KS USA
kbalviar@ksu.edu
Plant-virus-vector interactions lab
My research focuses on virus-vector interaction and we use the emerging model system, Peregrinus maidis, the corn planthopper and Maize mosaic rhabdovirus (MMV). Our goal is to identify vector molecules that respond to virus infection and how changes in vector physiology and behavior affect efficiency of transmission to host plants.
Badrul Arefin
Molecular Biosciences
Stockholm University
Stockholm   Sweden
badrul.arefin@su.se
Ulrich Theopold
I am interested in to understand the molecular and the cellular mechanisms involved in the response against nematode infections in Drosophila melanogaster. Currently, I am working on insect immunity, particularly Drosophila immunity towards entomopathogenic nematodes (EPN). Until now, our knowledge on Drosophila immunity mostly comes from studies of bacterial and fungal infections. However, nematode parasites are considered one the biggest threats to human health, causing diseases leading to death. Even when they are not killing, they could stay in the host and cause chronic diseases. Lymphatic filariasis is such an example which is caused by Wuchereria bancrofti (filarial nematode).
Kallare Arunkumar
Scientist
CV
Laboratory of Molecular Genetics
Centre for DNA Fingerprinting and Diagnostics
Hyderabad Telangana India
arun@cdfd.org.in
Laboratory of Molecular Genetics
During the last one decade, research in the silkworm, Bombyx mori has witnessed explosive developments which include unveiling of complete genome sequence; availability of large amount of transcirptomics resources through ESTs, microarray and RNAseq; high density linkage and physical maps; map-based cloning; well-established piggyBac mediated transgenics; TALENs based gene disruption systems; and identification of critical genes for proliferation of baculovirus. The concomitant advancements in other insects such as Drosophila, Honeybee, Mosquito, and Tribolium, particularly in understanding sex-determination mechanisms, microRNA functions, molecular mechanisms of immune response pathways and RNAi-based analysis of gene functions, provide impetus to build silkworm as a basic
Peter Atkinson
Professor
Entomology/Institute for Integrative Genome Biology
University of California Riverside
Riverside CA USA
peter.atkinson@ucr.edu
Atkinson Lab
I am interested in how transposable elements work both in vitro and in their host organisms. I am interested in how transposable elements can be harnessed as gene vectors in insects and also how they can be utilized in genetic control strategies.
Channa Aluvihare
Research Technician
technician
Insect Transformation Facility
Institute for Bioscience and Biotechnology Research
University of Maryland College Park at Shady Grove
Rockville MD USA
aluvihar@umd.edu
Insect Transformation Facility
Insect rearing for genetic modification, genetically modified organisms and gene delivery systems.
Dr. Zach N. Adelman
Associate Professor
faculty
Department of Entomology
Texas A&M University
College Station TX United States
zachadel@tamu.edu
Adelman Lab
Research in my laboratory is concerned with understanding the molecular and genetic interactions between arboviruses and their mosquito hosts. Research projects are based in the molecular virology of arboviruses (dengue viruses, Sindbis) as well as the molecular biology and genetic manipulation of the vector mosquito, Aedes aegypti.
Dr. Gro Amdam
Professor
faculty
School of Life Sciences
Arizona State University
Tempe AZ USA
gro.amdam@asu.edu
Amdam Lab
Our lab experimentally investigates honey bee social structure to understand how communal living evolved from ancestral solitary forms of life. As we have come to a better understanding of the physiology and genetics of bees, we have expanded our research interests: the honey bee (Apis mellifera) makes an ideal model organism for understanding the regulation of social life-history, aging and epigenetics.
Dr. Serap Aksoy
Professor
researcher
School of Public Health
Yale
New Haven Connecticut USA
serap.aksoy@yale.edu
Aksoy Lab
Our lab studies multiple aspects of tsetse flies, the vectors of African trypanosomes. Trypanosomes are the causative agents of the devastating Sleeping Sickness disease in Sub-Saharan Africa. The lab’s work spans a range of projects including tsetse immunity, reproduction and symbiosis, tsetse-symbiont and trypanosome interactions, tsetse genomics and population genetics, and trypanosome developmental processes in tsetse. The ultimate goal of our work is to improve current control methods and/or develop novel strategies to reduce or eliminate the transmission of Sleeping Sickness in Sub-Saharan Africa.